toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Bernabeu, J.; Martinez-Vidal, F.; Villanueva-Perez, P. url  doi
openurl 
  Title Time reversal violation from the entangled B-0(B)over-bar(0) system Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 064 - 18pp  
  Keywords Discrete and Finite Symmetries; B-Physics; CP violation  
  Abstract We discuss the concepts and methodology to implement an experiment probing directly Time Reversal (T) non-invariance, without any experimental connection to CP violation, by the exchange of in and out states. The idea relies on the B-0(B) over bar (0)) entanglement and decay time information available at B factories. The flavor or CP tag of the state of the still living neutral meson by the first decay of its orthogonal partner overcomes the problem of irreversibility for unstable systems, which prevents direct tests of T with incoherent particle states. T violation in the time evolution between the two decays means experimentally a difference between the rates for the time-ordered (l+X, J/psi K-s) and (J/psi K-L, l(-)X) decays, and three other independent asymmetries. The proposed strategy has been applied to simulated data samples of similar size and features to those currently available, from which we estimate the significance of the expected discovery to reach many standard deviations.  
  Address [Bernabeu, J.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309883600021 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1215  
Permanent link to this record
 

 
Author (down) Bernabeu, J.; Martinez-Vidal, F. url  doi
openurl 
  Title Colloquium: Time-reversal violation with quantum-entangled B mesons Type Journal Article
  Year 2015 Publication Reviews of Modern Physics Abbreviated Journal Rev. Mod. Phys.  
  Volume 87 Issue 1 Pages 165-182  
  Keywords  
  Abstract Symmetry transformations have been proven a bedrock tool for understanding the nature of particle interactions, formulating, and testing fundamental theories. Based on the up to now unbroken CPT symmetry, the violation of the CP symmetry between matter and antimatter by weak interactions, discovered in the decay of kaons in 1964 and observed more recently in 2001 in B mesons, strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. However, until recent years there has not been a direct detection of the expected time-reversal violation in the time evolution of any system. This Colloquium examines the field of time-reversal symmetry breaking in the fundamental laws of physics. For transitions, its observation requires an asymmetry with exchange of initial and final states. A discussion is given of the conceptual basis for such an exchange with unstable particles, using the quantum properties of Einstein-Podolsky-Rosen entanglement available at B meson factories combined with the decay as a filtering measurement. The method allows a clear-cut separation of different transitions between flavor and CP eigenstates in the decay of neutral B mesons. These ideas have been implemented for the experiment by the BABAR Collaboration at SLAC's B factory. The results, presented in 2012, prove beyond any doubt the violation of time-reversal invariance in the time evolution between these two states of the neutral B meson.  
  Address [Bernabeu, J.; Martinez-Vidal, F.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6861 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352076500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2179  
Permanent link to this record
 

 
Author (down) Bernabeu, J.; Martinez-Vidal, F. doi  openurl
  Title Time-Reversal Violation Type
  Year 2015 Publication Annual Review of Nuclear and Particle Science Abbreviated Journal Annu. Rev. Nucl. Part. Sci.  
  Volume 65 Issue Pages 403-427  
  Keywords time reversal; CP violation; T-odd products; electric dipole moments; B mesons; K mesons; EPR entanglement  
  Abstract The violation of CP symmetry between matter and antimatter in the neutral K and B meson systems is well established, with a high degree of consistency between all available experimental measurements and with the Standard Model of particle physics. On the basis of the up-to-now-unbroken CPT symmetry, the violation of CP symmetry strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. Many searches for T violation have been performed and proposed using different observables and experimental approaches. These include T-odd observables, such as triple products in weak decays, and genuine observables, such as permanent electric dipole moments of nondegenerate stationary states and the breaking of the reciprocity relation. We discuss the conceptual basis of the required exchange of initial and final states with unstable particles, using quantum entanglement and the decay as a filtering measurement, for the case of neutral B and K mesons. Using this method, the BaBar experiment at SLAC has clearly observed T violation in B mesons.  
  Address [Bernabeu, Jose; Martinez-Vidal, Fernando] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Annual Reviews Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-8998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363473100017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2430  
Permanent link to this record
 

 
Author (down) Bernabeu, J.; Espriu, D.; Puigdomenech, D. url  doi
openurl 
  Title Gravitational waves in the presence of a cosmological constant Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 6 Pages 063523 - 13pp  
  Keywords  
  Abstract We derive the effects of a nonzero cosmological constant Lambda on gravitational wave propagation in the linearized approximation of general relativity. In this approximation, we consider the situation where the metric can be written as g(mu nu) = eta(mu nu) + h(mu nu)(Lambda) + h(mu nu)(W), h(mu nu)(Lambda,W) << 1, where h(mu nu)(Lambda) is the background perturbation and h(mu nu)(W) is a modification interpretable as a gravitational wave. For Lambda not equal 0, this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order root Lambda, both in the amplitude and the phase, when considered in Friedmann-Robertson-Walker coordinates. In the linearization process for h(mu nu), we have also included terms of order O(Lambda h(mu nu)). For the background perturbation h(mu nu)(Lambda), the difference is very small, but when the term h(mu nu)(W)Lambda is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally, we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases, the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of Lambda could have a detectable impact on pulsar timing arrays.  
  Address [Bernabeu, J] Univ Valencia, Dept Fis Teor IFIC, CSIC, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295223100005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 766  
Permanent link to this record
 

 
Author (down) Bernabeu, J.; Espinoza, C.; Mavromatos, N.E. url  doi
openurl 
  Title Cosmological constant and local gravity Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 8 Pages 084002 - 7pp  
  Keywords  
  Abstract We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Lambda > 0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations ( due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild-de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the physical energy density is positive.  
  Address [Bernabeu, Jose; Espinoza, Catalina] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277205000057 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 460  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva