Barenboim, G., Sanchis, H., Kinney, W. H., & Rios, D. (2024). Bound on thermal y distortion of the cosmic neutrino background. Phys. Rev. D, 110(12), 123535–8pp.
Abstract: We consider the possibility that the cosmic neutrino background might have a nonthermal spectrum, and investigate its effect on cosmological parameters relative to standard A-cold dark matter (ACDM) cosmology. As a specific model, we consider a thermal y- distortion, which alters the distribution function of the neutrino background by depleting the population of low-energy neutrinos and enhancing the highenergy tail. We constrain the thermal y- parameter of the cosmic neutrino background using cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) measurements, and place a 95%-confidence upper bound of y <= 0.043. The y- parameter increases the number of effective relativistic degrees of freedom, reducing the sound horizon radius and increasing the best-fit value for the Hubble constant H 0 . We obtain an upper bound on the Hubble constant of H 0 = 71.12 km/s/Mpc at 95% confidence, substantially reducing the tension between CMB/BAO constraints and direct measurement of the expansion rate from type-Ia supernovae. Including a spectral distortion also allows for a higher value of the spectral index of scalar fluctuations, with a best-fit of n S = 0.9720 +/- 0.0063, and a 95%-confidence upper bound of n S <= 0.9842.
|
Barenboim, G., & Salvado, J. (2017). Cosmology and CPT violating neutrinos. Eur. Phys. J. C, 77(11), 766–18pp.
Abstract: The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment.
|
Barenboim, G., & Rasero, J. (2011). Baryogenesis from a right-handed neutrino condensate. J. High Energy Phys., 03(3), 097–15pp.
Abstract: We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
|
Barenboim, G., & Rasero, J. (2012). Electroweak baryogenesis window in non standard cosmologies. J. High Energy Phys., 07(7), 028–20pp.
Abstract: In this work we show that the new bounds on the Higgs mass are more than difficult to reconcile with the strong constraints on the physical parameters of the Standard Model and the Minimal Supersymmetric Standard Model imposed by the preservation of the baryon asymmetry. This bound can be weakened by assuming a nonstandard cosmology at the time of the electroweak phase transition, reverting back to standard cosmology by BBN time. Two explicit examples are an early period of matter dominated expansion due to a heavy right handed neutrino (see-saw scale), or a nonstandard braneworld expansion.
|
Barenboim, G., & Rasero, J. (2014). Structure formation during an early period of matter domination. J. High Energy Phys., 04(4), 138–17pp.
Abstract: In this work we show that modifying the thermal history of the Universe by including an early period of matter domination can lead to the formation of astronomical objects. However, the survival of these objects can only be possible if the dominating matter decays to a daughter particle which is not only almost degenerate with the parent particle but also has an open annihilation channel. This requirement translates in an upper bound for the coupling of such a channel and makes the early structure formation viable.
|