Ramirez-Uribe, S., Dhani, P. K., Sborlini, G. F. R., & Rodrigo, G. (2024). Rewording Theoretical Predictions at Colliders with Vacuum Amplitudes. Phys. Rev. Lett., 133(21), 211901–8pp.
Abstract: We propose multiloop vacuum amplitudes in the loop-tree duality (LTD) as the optimal building blocks for efficiently assembling theoretical predictions at high-energy colliders. This hypothesis is strongly supported by the manifestly causal properties of the LTD representation of a vacuum amplitude. The vacuum amplitude in LTD, acting as a kernel, encodes all the final states contributing to a given scattering or decay process through residues in the on-shell energies of the internal propagators. Gauge invariance and the wave function renormalization of the external legs are naturally incorporated. This methodological approach, dubbed LTD causal unitary, leads to a novel differential representation of cross sections and decay rates that is locally free of ultraviolet and infrared singularities at all orders in perturbation theory. Threshold singularities also match between different phase-space residues. Most notably, it allows us to conjecture for the first time the local functional form of initial-state collinear splitting functions. The fulfillment of all these properties provides a theoretical description of differential observables at colliders that is well defined in the four physical dimensions of the space-time.
|
Pompa, F., Capozzi, F., Mena, O., & Sorel, M. (2022). Absolute nu Mass Measurement with the DUNE Experiment. Phys. Rev. Lett., 129(12), 121802–6pp.
Abstract: Time of flight delay in the supernova neutrino signal offers a unique tool to set model-independent constraints on the absolute neutrino mass. The presence of a sharp time structure during a first emission phase, the so-called neutronization burst in the electron neutrino flavor time distribution, makes this channel a very powerful one. Large liquid argon underground detectors will provide precision measurements of the time dependence of the electron neutrino fluxes. We derive here a new v mass sensitivity attainable at the future DUNE far detector from a future supernova collapse in our galactic neighborhood, finding a sub-eV reach under favorable scenarios. These values are competitive with those expected for laboratory direct neutrino mass searches.
|
Podolyak, Z. (2016). Role of the Delta Resonance in the Population of a Four-Nucleon State in the Fe-56 -> Fe-54 Reaction at Relativistic Energies. Phys. Rev. Lett., 117(22), 222302–6pp.
Abstract: The Fe-54 nucleus was populated from a Fe-56 beam impinging on a Be target with an energy of E/A = 500 MeV. The internal decay via gamma-ray emission of the 10(+) metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the Fe-56 ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of Fe-54, suggesting that it was populated via the decay of the Delta(0) resonance into a proton. This process allows the population of fournucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10(+) metastable state in Fe-54 is a consequence of the quark structure of the nucleons.
|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2012). Measurement of the Proton-Air Cross Section at root s=57 TeV with the Pierre Auger Observatory. Phys. Rev. Lett., 109(6), 062002–9pp.
Abstract: We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 +/- 22(stat)(-36)(+28)(syst)] mb is found.
|
Pierre Auger Collaboration(Abraham, J. et al), & Pastor, S. (2010). Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV. Phys. Rev. Lett., 104(9), 091101–7pp.
Abstract: We describe the measurement of the depth of maximum, X-max, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +/- 35-21) g/cm(2)/decade below 10(18.24) +/- (0.05) eV, and d24 +/- 3 g/cm(2)/ecade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm(2). The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.
|
Pich, A., Rosell, I., & Sanz-Cillero, J. J. (2013). Viability of Strongly Coupled Scenarios with a Light Higgs-like Boson. Phys. Rev. Lett., 110(18), 181801–4pp.
Abstract: We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model.
|
Phong, V. H. et al, Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., Rubio, B., et al. (2022). Beta-Delayed One and Two Neutron Emission Probabilities South-East of Sn-132 and the Odd-Even Systematics in r-Process Nuclide Abundances. Phys. Rev. Lett., 129(18), 172701–7pp.
Abstract: The beta-delayed one- and two-neutron emission probabilities (P-1n and P-2n) of 20 neutron-rich nuclei with N >= 82 have been measured at the RIBF facility of the RIKEN Nishina Center. P-1n of Ag-130;131, Cd-133;134, In-135;136, and (138;13)9Sn were determined for the first time, and stringent upper limits were placed on P-2n for nearly all cases. beta-delayed two-neutron emission (beta 2n) was unambiguously identified in Cd-133 and In-135;136, and their P-2n were measured. Weak beta 2n was also detected from Sn-137;138. Our results highlight the effect of the N = 82 and Z = 50 shell closures on beta-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and. emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P-1n and P-2n have a direct impact on the
|
Perez-Vidal, R. M. et al, Gadea, A., Jurado, M., Domingo-Pardo, C., & Huyuk, T. (2022). Evidence of Partial Seniority Conservation in the pi g9/2 Shell for the N=50 Isotones. Phys. Rev. Lett., 129(11), 112501–7pp.
Abstract: The reduced transition probabilities for the 4+1 -2+1 and 2+1 -0+1 transitions in 92Mo and 94Ru and for the 4+1 -2+1 and 6+1 -4+1 transitions in 90Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f5=2, p3=2, p1=2, and g9=2 proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N = 50 g9=2 orbital to be understood. The conclusion is that seniority is largely conserved in the first 71g9=2 orbital.
|
Paxman, C. J. et al, Domingo-Pardo, C., Gadea, A., Perez-Vidal, R. M., & Valiente-Dobon, J. J. (2025). Probing Exotic Cross-Shell Interactions at N=28 with Single-Neutron Transfer on 47K. Phys. Rev. Lett., 134(16), 162504–8pp.
Abstract: We present the first measurement of the 47K(d, p gamma)48K transfer reaction, performed in inverse kinematics using a reaccelerated beam of 47K. The level scheme of 48K has been greatly extended, with nine new bound excited states identified and spectroscopic factors deduced. Uniquely, the 47K(d, p) reaction gives access to nuclear states that are sensitive to the interaction of protons and neutrons in the widely spaced 1s and fp orbitals, respectively. Detailed comparisons with SDPF-U and SDPF-MU shell-model calculations reveal a number of discrepancies between theory and experiment. Intriguingly, a systematic overestimation of spectroscopic factors and a poor reproduction of the energies for 1- states suggests that the mixing between the pi s11/2d43/2 and pi s21/2d33/2 proton configurations in 48K is not correctly described using current interactions, challenging our description of light nuclei around the N = 28 island of inversion.
|
Orrigo, S. E. A. et al, Rubio, B., Agramunt, J., Algora, A., & Molina, F. (2014). Observation of the beta-Delayed gamma-Proton Decay of Zn-56 and its Impact on the Gamow-Teller Strength Evaluation. Phys. Rev. Lett., 112(22), 222501–5pp.
Abstract: We report the observation of a very exotic decay mode at the proton drip line, the beta-delayed gamma-proton decay, clearly seen in the beta decay of the T-z = -2 nucleus Zn-56. Three gamma-proton sequences have been observed after the beta decay. Here this decay mode, already observed in the sd shell, is seen for the first time in the f p shell. Both. and proton decays have been taken into account in the estimation of the Fermi and Gamow-Teller strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.
|