|   | 
Details
   web
Records
Author (down) Particle Data Group (Zyla, P.A. et al); Hernandez-Rey, J.J.; Pich, A.
Title Review of Particle Physics Type Journal Article
Year 2020 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume 2020 Issue 8 Pages 083C01 - 2093pp
Keywords
Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.
Address [Zyla, P. A.; Barnett, R. M.; Beringer, J.; Dahl, O.; Dwyer, D. A.; Groom, D. E.; Lin, C-J; Lugovsky, K. S.; Pianori, E.; Robinson, D. J.; Wohl, C. G.; Yao, W-M; Bauer, C. W.; Cahn, R. N.; Ligeti, Z.; Ramani, H.; Smoot, G. F.; White, M.; Anderson, J.; Schaffner, P.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000593152600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4625
Permanent link to this record
 

 
Author (down) Particle Data Group (Workman, R.L. et al); Hernandez-Rey, J.J.; Pich, A.
Title Review of Particle Physics Type Journal Article
Year 2022 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume 2022 Issue 8 Pages 083C01 - 2270pp
Keywords
Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.
Address [Workman, R. L.] George Washington Univ, Dept Phys, Washington, DC 20052 USA
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000841419600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5355
Permanent link to this record
 

 
Author (down) Park, B.Y.; Paeng, W.G.; Vento, V.
Title The inhomogeneous phase of dense skyrmion matter Type Journal Article
Year 2019 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 989 Issue Pages 231-245
Keywords Skyrmion; Dense matter; Phase transition
Abstract It was predicted qualitatively in ref. [I] that skyrmion matter at low density is stable in an inhomogeneous phase where skyrmions condensate into lumps while the remaining space is mostly empty. The aim of this paper is to proof quantitatively this prediction. In order to construct an inhomogeneous medium we distort the original FCC crystal to produce a phase of planar structures made of skyrmions. We implement mathematically these planar structures by means of the 't Hooft instanton solution using the Atiyah-Manton ansatz. The results of our calculation of the average density and energy confirm the prediction suggesting that the phase diagram of the dense skyrmion matter is a lot more complex than a simple phase transition from the skyrmion FCC crystal lattice to the half-skyrmion CC one. Our results show that skyrmion matter shares common properties with standard nuclear matter developing a skin and leading to a binding energy equation which resembles the Weiszacker mass formula.
Address [Park, Byung-Yoon] Chungnam Natl Univ, Dept Phys, Daejon 305764, South Korea, Email: bypark@cnu.ac.kr;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000478705300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4098
Permanent link to this record
 

 
Author (down) Parashar, S.; Karan, A.; Avnish; Bandyopadhyay, P.; Ghosh, K.
Title Phenomenology of scalar leptoquarks at the LHC in explaining the radiative neutrino masses, muon g-2, and lepton flavor violating observables Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 9 Pages 095040 - 34pp
Keywords
Abstract We study the phenomenology of a particular leptoquark extension of the Standard Model (SM), namely the doublet-singlet scalar leptoquark extension of the SM (DSL-SM). Besides generating Majorana mass for neutrinos, these leptoquarks contribute to muon and electron (g – 2) and various lepton flavor violating processes. Collider signatures of the benchmark points (BPs), consistent with the neutrino oscillation data, anomalous muon/electron magnetic moments, experimental bounds on the charged lepton flavor violation observables, etc., are studied at the LHC/FCC with center-of-mass energies of 14, 27 and 100 TeV. While the two -1=3 charged colored scalars from the singlet and the doublet leptoquark mix with each other, the charge 2=3 colored scalar from the doublet leptoquark remains pure. With a near-degenerate mass spectrum, the pure and mixed leptoquark states are shown to be distinguishable from multiple final states, while discerning between the two mixed states remains very challenging.
Address [Parashar, Snehashis; Bandyopadhyay, Priyotosh] Indian Inst Technol Hyderabad, Sangareddy 502284, Telangana, India, Email: ph20resch11006@iith.ac.in;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000956618800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5506
Permanent link to this record
 

 
Author (down) Papoulias, D.K.; Kosmas, T.S.; Sahu, R.; Kota, V.K.B.; Hota, M.
Title Constraining nuclear physics parameters with current and future COHERENT data Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 800 Issue Pages 135133 - 9pp
Keywords Coherent neutrino elastic neutrino-nucleus; scattering; COHERENT experiment; Deformed shell model; Weak neutron form factors
Abstract Motivated by the recent observation of coherent elastic neutrino-nucleus scattering (CE nu NS) at the COHERENT experiment, our goal is to explore its potential in probing important nuclear structure parameters. We show that the recent COHERENT data offers unique opportunities to investigate the neutron nuclear form factor. Our present calculations are based on the deformed Shell Model (DSM) method which leads to a better fit of the recent CE nu NS data, as compared to known phenomenological form factors such as the Helm-type, symmetrized Fermi and Klein-Nystrand. The attainable sensitivities and the prospects of improvement during the next phase of the COHERENT experiment are also considered and analyzed in the framework of two upgrade scenarios.
Address [Papoulias, D. K.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: dipapou@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000503832500014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4244
Permanent link to this record