Bottoni, S. et al, Gadea, A., & Perez-Vidal, R. M. (2024). Search for the γ decay of the narrow near-threshold proton resonance in 11B. Phys. Lett. B, 855, 138851–4pp.
Abstract: The y decay of the elusive narrow, near-threshold proton resonance in 11 B was investigated at Laboratori Nazionali di Legnaro (INFN) in a particle-y coincidence experiment, using the 6 Li( 6 Li,py) fusion-evaporation reaction and the GALILEO-GALTRACE setup. No clear signature was found for a possible E1 decay to the 1/2-1, – 1 , first-excited state of 11 B, predicted by the Shell Model Embedded in the Continuum (SMEC) with a branching of 0.98+167 +167 -69 x 10-3 -3 with respect to the dominant particle-decaying modes. The statistical analysis of the y-ray spectrum provided an average upper limit of 2.37 x 10-3 -3 for this y-ray branching, with a global significance of 5 sigma. On the other hand, by imposing a global confidence level of 3 sigma, a significant excess of counts was observed for Ey y = 9300(20) keV, corresponding to a resonance energy of 11429(20) keV (namely 200(20) keV above the proton separation energy of 11 B) and a y-ray branching of 1.12(35) x10-3. -3 . This result is compatible with the SMEC calculations, potentially supporting the existence of a near-threshold proton resonance in 11 B.
|
Botella, F. J., Branco, G. C., & Rebelo, M. N. (2010). Minimal flavour violation and multi-Higgs models. Phys. Lett. B, 687(2-3), 194–200.
Abstract: We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs models without the assumption of Natural Flavour Conservation (NFC) in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of V-CKM and propose a MFV expansion for the neutral Higgs couplings to fermions.
|
Botella, F. J., Branco, G. C., & Rebelo, M. N. (2013). Invariants and flavour in the general Two Higgs Doublet Model. Phys. Lett. B, 722(1-3), 76–82.
Abstract: The flavour structure of the general Two Higgs Doublet Model (2HDM) is analysed and a detailed study of the parameter space is presented, showing that flavour mixing in the 2HDM can be parametrized by various unitary matrices which arise from the misalignment in flavour space between pairs of various Hermitian flavour matrices which can be constructed within the model. This is entirely analogous to the generation of the CKM matrix in the Standard Model (SM). We construct weak basis invariants which can give insight into the physical implications of any flavour model, written in an arbitrary weak basis (WB) in the context of 2HDM. We apply this technique to two special cases, models with MFV and models with NNI structures. In both cases non-trivial CP-odd WB invariants arise in a mass power order much smaller than what one encounters in the SM, which can have important implications for baryogenesis in the framework of the general 2HDM.
|
Boso, A. et al, Domingo-Pardo, C., & Perez-Vidal, R. M. (2019). Isospin dependence of electromagnetic transition strengths among an isobaric triplet. Phys. Lett. B, 797, 134835–6pp.
Abstract: Electric quadrupole matrix elements, M-p, for the J(pi) = 2(+) -> 0(+), Delta T = 0, T = 1 transitions across the A = 46 isobaric multiplet Cr-46-V-46-Ti-46 have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of M-p with respect to T-z. Pairs of nuclei in the T = 1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The M-p values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for Cr-46 and Ti-46; (ii) a “stretched target” technique was adopted here, for the first time, for lifetime measurements in V-46 and Ti-46. A constant value of M-p across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T = 1 isospin triplets is presented.
|
Boronat, M., Fuster, J., Garcia, I., Ros, E., & Vos, M. (2015). A robust jet reconstruction algorithm for high-energy lepton colliders. Phys. Lett. B, 750, 95–99.
Abstract: We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of t (t) over tilde and ZZ production at future linear e(+)e(-) colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e(+)e(-) colliders.
|
Boronat, M., Fullana, E., Fuster, J., Gomis, P., Hoang, A. H., Widl, A., et al. (2020). Top quark mass measurement in radiative events at electron-positron colliders. Phys. Lett. B, 804, 135353–9pp.
Abstract: In this letter, we evaluate the potential of linear e(+)e(-) colliders to measure the top quark mass in radiative events and in a suitable short-distance scheme. We present a calculation of the differential cross section for production of a top quark pair in association with an energetic photon from initial state radiation, as a function of the invariant mass of the t (t) over bar. This matchedcalculation includes the QCD enhancement of the cross section around the t (t) over bar production threshold and remains valid in the continuum well above the threshold. The uncertainty in the top mass determination is evaluated in realistic operating scenarios for the Compact Linear Collider (CLIC) and the International Linear Collider (ILC), including the statistical uncertainty and the theoretical and experimental systematic uncertainties. With this method, the top quark mass can be determined with a precision of 110 MeV in the initial stage of CLIC, with 1 ab(-1) at root s = 380 GeV, and with a precision of approximately 150 MeV at the ILC, with L = 4 ab(-1) at root s = 500GeV. Radiative events allow measurements of the top quark mass at different renormalization scales, and we demonstrate that such a measurement can yield a statistically significant test of the evolution of the MSR mass m(t)(MSR)(R) for scales R < m(t).
|
Borexino Collaboration(Bellini, G. et al), & Pena-Garay, C. (2012). Absence of a day-night asymmetry in the Be-7 solar neutrino rate in Borexino. Phys. Lett. B, 707(1), 22–26.
Abstract: We report the result of a search for a day-night asymmetry in the Be-7 solar neutrino interaction rate in the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The measured asymmetry is A(dn) = 0.001 +/- 0.012 (stat) +/- 0.007 (syst), in agreement with the prediction of MSW-LMA solution for neutrino oscillations. This result disfavors MSW oscillations with mixing parameters in the LOW region at more than 8.5 sigma. This region is, for the first time, strongly disfavored without the use of reactor anti-neutrino data and therefore the assumption of CPT symmetry. The result can also be used to constrain some neutrino oscillation scenarios involving new physics.
|
Bonilla, C., & Valle, J. W. F. (2016). Naturally light neutrinos in Diracon model. Phys. Lett. B, 762, 162–165.
Abstract: We propose a simple model for Dirac neutrinos where the smallness of neutrino mass follows from a parameter kappa whose absence enhances the symmetry of the theory. Symmetry breaking is performed in a two-doublet Higgs sector supplemented by a gauge singlet scalar, realizing an accidental global U(1) symmetry. Its spontaneous breaking at the few TeV scale leads to a physical Nambu -Goldstone – boson the Diracon, denoted D – which is restricted by astrophysics and induces invisible Higgs decays such as h -> DD. The scheme provides a rich, yet very simple scenario for symmetry breaking studies at colliders such as the LHC.
|
Bonilla, C., Morisi, S., Peinado, E., & Valle, J. W. F. (2015). Relating quarks and leptons with the T-7 flavour group. Phys. Lett. B, 742, 99–106.
Abstract: In this letter we present a model for quarks and leptons based on T-7 as flavour symmetry, predicting a canonical mass relation between charged leptons and down-type quarks proposed earlier. Neutrino masses are generated through a Type-I seesaw mechanism, with predicted correlations between the atmospheric mixing angle and neutrino masses. Compatibility with oscillation results leads to lower bounds for the lightest neutrino mass as well as for the neutrinoless double beta decay rates, even for normal neutrino mass hierarchy.
|
Bonilla, C., Ma, E., Peinado, E., & Valle, J. W. F. (2016). Two-loop Dirac neutrino mass and WIMP dark matter. Phys. Lett. B, 762, 214–218.
Abstract: We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.
|