|   | 
Details
   web
Records
Author (down) Figueroa, D.G.; Florio, A.; Opferkuch, T.; Stefanek, B.
Title Lattice simulations of non-minimally coupled scalar fields in the Jordan frame Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue 3 Pages 077 - 28pp
Keywords
Abstract The presence of scalar fields with non-minimal gravitational interactions of the form & xi;|& phi;|2R may have important implications for the physics of the early universe. We propose a procedure to solve the dynamics of non-minimally coupled scalar fields directly in the Jordan frame, where the non-minimal couplings are maintained explicitly. Our algorithm can be applied to lattice simulations that include minimally coupled fields and an arbitrary number of non-minimally coupled scalars, with the expansion of the universe sourced by all fields present. This includes situations when the dynamics become fully inhomogeneous, fully non-linear (due to e.g. backreaction or mode rescattering effects), and/or when the expansion of the universe is dominated by non-minimally coupled species. As an example, we study geometric preheating with a non-minimally coupled scalar spectator field when the inflaton oscillates following the end of inflation.
Address [Figueroa, Daniel G.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueroa@ific.uv.es;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:001065573600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5670
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Torrenti, F.
Title Ultraviolet-regularized power spectrum without infrared distortions in cosmological spacetimes Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 840 Issue Pages 137868 - 6pp
Keywords
Abstract We reexamine the regularization of the two-point function of a scalar field in a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. Adiabatic regularization provides a set of subtraction terms in momentum space that successfully remove its ultraviolet divergences at coincident points, but can significantly distort the power spectrum at infrared scales, especially for light fields. In this work we propose, by using the intrinsic ambiguities of the renormalization program, a new set of subtraction terms that minimize the distortions for scales k less than or similar to M, with M an arbitrary mass scale. Our method is consistent with local covariance and equivalent to general regularization methods in curved spacetime. We apply our results to the regularization of the power spectrum in de Sitter space: while the adiabatic scheme yields exactly Delta((reg))(phi) = 0 for a massless field, our proposed prescription recovers the standard scale-invariant result Delta((reg))(phi) similar or equal to H-2/(4 pi(2)) at super-horizon scales.
Address [Ferreiro, Antonio] Dublin City Univ, Ctr Astrophys & Relat, Sch Math Sci, Dublin 9, Ireland, Email: antonio.ferreiro@dcu.ie;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000968486900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5514
Permanent link to this record
 

 
Author (down) Ferreira, M.N.; Papavassiliou, J.
Title Gauge Sector Dynamics in QCD Type Journal Article
Year 2023 Publication Particles Abbreviated Journal Particles
Volume 6 Issue 1 Pages 312-363
Keywords continuum Schwinger function methods; emergence of hadron mass; gluon mass generation; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger-Dyson equations; Schwinger mechanism
Abstract The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.
Address [Ferreira, Mauricio Narciso; Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: ansonar@uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000959126400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5504
Permanent link to this record
 

 
Author (down) Fernandez-Martinez, E.; Lopez-Pavon, J.; No, J.M.; Ota, T.; Rosauro-Alcaraz, S.
Title nu Electroweak baryogenesis: the scalar singlet strikes back Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 8 Pages 715 - 23pp
Keywords
Abstract We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.
Address [Fernandez-Martinez, E.; No, J. M.; Ota, T.] Univ Autonoma Madrid, CSIC, Dept Fis Teor, IFT UAM, Madrid 28049, Spain, Email: rosauro@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001045200700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5609
Permanent link to this record
 

 
Author (down) Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J.
Title Effective portals to heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 001 - 45pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.
Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067715500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5697
Permanent link to this record