|   | 
Details
   web
Records
Author (down) Vagnozzi, S.; Dhawan, S.; Gerbino, M.; Freese, K.; Goobar, A.; Mena, O.
Title Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) >=-1 are tighter than those obtained in Lambda CDM Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages 083501 - 20pp
Keywords
Abstract We explore cosmological constraints on the sum of the three active neutrino masses M-v in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift z by w(z) = w(0) + w(a)z/ (1 + z), and satisfying w(z) >= -1 for all z. We make use of cosmic microwave background data from the Planck satellite, baryon acoustic oscillation measurements, and supernovae la luminosity distance measurements, and perform a Bayesian analysis. We show that, within these models, the bounds on M-v do not degrade with respect to those obtained in the Lambda CDM case; in fact, the bounds arc slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of w(0), w(a) such that w(z) >= -1 (but not w = -1 for all z), the upper limit on M-v is tighter than the Lambda CDM limit because of the well-known degeneracy between w and M-v. The Bayesian analysis we have carried out then integrates over the possible values of w(0)-w(a) such that w(z) >= -1, all of which correspond to tighter limits on M-v than the Lambda CDM limit. We find a 95% credible interval (C.I.) upper bound of M-v < 0.13 eV. This bound can be compared with the 95% C.I. upper bounds of M-v < 0.16 eV, obtained within the Lambda CDM model, and M-v < 0.41 eV, obtained in a DDE model with arbitrary EoS (which allows values of w < -1). Contrary to the results derived for DDE models with arbitrary EoS, we find that a dark energy component with w(z) >= -1 is unable to alleviate the tension between high-redshift observables and direct measurements of the Hubble constant H o . Finally, in light of the results of this analysis, we also discuss the implications for DDE models of a possible determination of the neutrino mass ordering by laboratory searches.
Address [Vagnozzi, Sunny; Dhawan, Suhail; Gerbino, Martina; Freese, Katherine; Goobar, Ariel] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden, Email: sunny.vagnozzi@fysik.su.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000446136900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3749
Permanent link to this record
 

 
Author (down) Utrilla Gines, E.; Mena, O.; Witte, S.J.
Title Revisiting constraints on WIMPs around primordial black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 6 Pages 063538 - 14pp
Keywords
Abstract While primordial black holes (PBHs) with masses MPBH greater than or similar to 10-11 Mo cannot comprise the entirety of dark matter, the existence of even a small population of these objects can have profound astrophysical consequences. A subdominant population of PBHs will efficiently accrete dark matter particles before matter-radiation equality, giving rise to high-density dark matter spikes. We consider here the scenario in which dark matter is comprised primarily of weakly interacting massive particles (WIMPs) with a small subdominant contribution coming from PBHs, and revisit the constraints on the annihilation of WIMPs in these spikes using observations of the isotropic gamma-ray background (IGRB) and the cosmic microwave background (CMB), for a range of WIMP masses, annihilation channels, cross sections, and PBH mass functions. We find that the constraints derived using the IGRB have been significantly overestimated (in some cases by many orders of magnitude), and that limits obtained using observations of the CMB are typically stronger than, or comparable to, those coming from the IGRB. Importantly, we show that similar to OoMo thorn PBHs can still contribute significantly to the dark matter density for sufficiently low WIMP masses and p-wave annihilation cross sections.
Address [Utrilla Gines, Estanis; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000866519600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5390
Permanent link to this record
 

 
Author (down) Unno, Y. et al; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti-Garcia, S.; Soldevila, U.
Title Development of n(+) -in-p large-area silicon microstrip sensors for very high radiation environments-ATLAS12 design and initial results Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 80-90
Keywords Silicon strip; n(+)-in-p; P-type; Radiation-tolerant; HL-LHC; PTP
Abstract We have been developing a novel radiation tolerant n(+)-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float zone wafers, where large area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 pm and slim edge space of 450 pm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.
Address [Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England, Email: yoshinobu.unno@kek.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2002
Permanent link to this record
 

 
Author (down) Unno, Y. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Specifications and pre-production of n plus -in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 3 Pages T03008 - 29pp
Keywords Particle tracking detectors (Solid-state detectors); Radiation-hard detectors; Si microstrip and pad detectors
Abstract The ATLAS experiment is constructing new all-silicon inner tracking system for HL-LHC. The strip detectors cover the radial extent of 40 to 100 cm. A new approach is adopted to use p-type silicon material, making the readout in n+-strips, so-called n+-in-p sensors. This allows for enhanced radiation tolerance against an order of magnitude higher particle fluence compared to the LHC. To cope with varying hit rates and occupancies as a function of radial distance, there are two barrel sensor types, the short strips (SS) for the inner 2 and the long strips (LS) for the outer 2 barrel cylinders, respectively. The barrel sensors exhibit a square, 9.8 x 9.8 cm2, geometry, the largest possible sensor area from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 μm and 4 or 2 rows of strip segments. The strips are AC-coupled and biased via polysilicon resistors. The endcap sensors employ a “stereo-annulus” geometry exhibiting a skewed-trapezoid shapes with circular edges. They are designed in 6 unique shapes, R0 to R5, corresponding to progressively increasing radial extents and which allows them to fit within the petal geometry and the 6-inch wafer maximally. The strips are in fan-out geometry with an in-built rotation angle, with a mean pitch of approximately 75 μm and 4 or 2 rows of strip segments. The eight sensor types are labeled as ATLAS18xx where xx stands for SS, LS, and R0 to R5. According to the mechanical and electrical specifications, CAD files for wafer processing were laid out, following the successful designs of prototype barrel and endcap sensors, together with a number of optimizations. A pre-production was carried out prior to the full production of the wafers. The quality of the sensors is reviewed and judged excellent through the test results carried out by vendor. These sensors are used for establishing acceptance procedures and to evaluate their performance in the ATLAS collaboration, and subsequently for pre-production of strip modules and stave and petal structures.
Address [Allport, P. P.; Chisholm, A.; George, W.; Gonella, L.; Kopsalis, I.; Lomas, J.] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, England, Email: yoshinobu.unno@kek.jp
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000974242700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5522
Permanent link to this record
 

 
Author (down) Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W.
Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 252-257
Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade
Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.
Address [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2003
Permanent link to this record