|   | 
Details
   web
Records
Author (down) Garani, R.; Gasparotto, F.; Mastrolia, P.; Munch, H.J.; Palomares-Ruiz, S.; Primo, A.
Title Two-photon exchange in leptophilic dark matter scenarios Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 212 - 42pp
Keywords Cosmology of Theories beyond the SM; Effective Field Theories; Integrable Hierarchies
Abstract In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, which only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we quantitatively show that form factors in the range of momentum transfer relevant for local galactic dark matter, can be significantly smaller than their value at zero momentum transfer, which is the approach usually considered.
Address [Garani, Raghuveer] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000736468500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5068
Permanent link to this record
 

 
Author (down) Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title The QCD axion and unification Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 093 - 21pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT
Abstract The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma, <^> (3-13) x 10-9 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.
Address [Perez, Pavel Fileviez; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000514868300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4296
Permanent link to this record
 

 
Author (down) Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title Axion dark matter, proton decay and unification Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 091 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT
Abstract We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range m(a) = (2-16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, tau(p -> K+(nu) over bar) less than or similar to 4 x 10(37) yr and tau(p -> pi(+)(nu) over bar) less than or similar to 2 x 10(36) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.
Address [Fileviez Perez, Pavel; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000588065200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4605
Permanent link to this record
 

 
Author (down) Fernandez-Martinez, E.; Lopez-Pavon, J.; Ota, T.; Rosauro-Alcaraz, S.
Title nu electroweak baryogenesis Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 063 - 28pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; CP viola- tion; Neutrino Physics
Abstract We investigate if the CP violation necessary for successful electroweak baryo- genesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singlets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
Address [Fernandez-Martinez, E.; Ota, T.; Rosauro-Alcaraz, S.] Univ Autonoma Madrid, Dept Fis Teor, IFT UAM CSIC, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000582727900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4582
Permanent link to this record
 

 
Author (down) Escudero, M.; Witte, S.J.; Rius, N.
Title The dispirited case of gauged U(1)(B-L) dark matter Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 190 - 30pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged U(1)(B-L) symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for 150 GeV < m(z') < 3 TeV. We further explore the phenomenology in the high mass region (i.e. masses greater than or similar to O(1) TeV) and highlight theoretical arguments, related to the appearance of a Landau pole or an instability of the scalar potential, disfavoring large portions of this parameter space. Collectively, these considerations illustrate that a minimal extension of the Standard Model via a local U(1)(B-L) symmetry with a viable thermal dark matter candidate is difficult to achieve without fine-tuning. We conclude by discussing possible extensions of the model that relieve tension with collider constraints by reducing the gauge coupling required to produce the correct relic abundance.
Address [Escudero, Miguel] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Miguel.Escudero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000443008100006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3706
Permanent link to this record