toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Sarriguren, P.; Algora, A.; Kiss, G. url  doi
openurl 
  Title beta-decay properties of neutron-rich Ca, Ti, and Cr isotopes Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 98 Issue 2 Pages 024311 - 10pp  
  Keywords  
  Abstract beta-decay properties of neutron-rich Ca, Ti, and Cr isotopes are studied within a deformed proton-neutron quasiparticle random-phase approximation. The underlying mean field is described self-consistently from deformed Skyrme Hartree-Fock calculations with pairing correlations. Residual spin-isospin interactions in the particle-hole and particle-particle channels are also included in the formalism. The energy distributions of the Gamow-Teller strength, the beta-decay feedings, the beta-decay half-lives, and the beta-delayed neutron emission probabilities are discussed and compared with other theoretical results, as well as with the available experimental information. The evolution of these nuclear beta-decay properties is investigated in isotopic chains in a search for structural changes. A reliable estimate of the beta-decay properties in this mass region is valuable information for evaluating decay rates in astrophysical scenarios.  
  Address [Sarriguren, P.] IEM CSIC, Inst Estruct Mat, Serrano 123, E-28006 Madrid, Spain, Email: p.sarriguren@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442078500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3698  
Permanent link to this record
 

 
Author (down) Santos, A.C.L.; Muniz, C.R.; Maluf, R.V. url  doi
openurl 
  Title Yang-Mills Casimir wormholes in D=2+1 Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 24pp  
  Keywords Wormholes; Exact solutions; black holes and black hole thermodynamics in GR and beyond; gravity  
  Abstract This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.  
  Address [Santos, Alana C. L.; Maluf, Roberto V.] Univ Fed Ceara UFC, Departamento Fis, Campus Pici,6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: alanasantos@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001196198800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6031  
Permanent link to this record
 

 
Author (down) Sandner, S.; Hernandez, P.; Lopez-Pavon, J.; Rius, N. url  doi
openurl 
  Title Predicting the baryon asymmetry with degenerate right-handed neutrinos Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 153 - 37pp  
  Keywords Baryo-and Leptogenesis; Sterile or Heavy Neutrinos; Early Universe Particle Physics  
  Abstract We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.  
  Address [Sandner, S.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001111979900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5869  
Permanent link to this record
 

 
Author (down) Sandner, S.; Escudero, M.; Witte, S.J. url  doi
openurl 
  Title Precision CMB constraints on eV-scale bosons coupled to neutrinos Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 8 Pages 709 - 12pp  
  Keywords  
  Abstract The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalizewith neutrinos via the inverse decay process, v (v) over bar -> X, and suppress neutrino free streaming near recombination – even for couplings as small as lambda(v) similar to O(10(-13)). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either N-int = 1, 2 or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivatedmodels, such as the singlet majoron model or a light U(1) L-mu- L-t gauge boson, and find that they represent the leading constraints for masses m(X) similar to 1 eV. Finally, we revisit the extent to which neutrinophilic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.  
  Address [Sandner, Stefan] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001045200700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5608  
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K.; Domenech-Garret, J.L.; Sanchis-Gual, N. url  doi
openurl 
  Title Cosmological analogies in the search for new physics in high-energy collisions Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 3 Pages 035013 - 7pp  
  Keywords  
  Abstract In this paper, analogies between multiparticle production in high-energy collisions and the time evolution of the early Universe are discussed. A common explanation is put forward under the assumption of an unconventional early state: a rapidly expanding universe before recombination (last scattering surface), followed by the cosmic microwave background, later evolving up to present days, versus the formation of hidden/dark states in hadronic collisions followed by a conventional QCD parton shower yielding final-state particles. In particular, long-range angular correlations are considered pointing out deep connections between the two physical cases potentially useful for the discovery of new physics.  
  Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000558084500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4498  
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Sanz, V. url  doi
openurl 
  Title Observable imprints of primordial gravitational waves on the temperature anisotropies of the cosmic microwave background Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 6 Pages 063529 - 11pp  
  Keywords  
  Abstract We examine the contribution of tensor modes, in addition to the dominant scalar ones, on the temperature anisotropies of the cosmic microwave background (CMB). To this end, we analyze in detail the temperature two -point angular correlation function C(Theta) from the Planck 2018 dataset, focusing on large angles (Theta greater than or similar to 120 degrees) corresponding to small l multipoles. A hierarchical set of infrared cutoffs are naturally introduced to the scalar and tensor power spectra of the CMB by invoking an extra Kaluza-Klein spatial dimension compactifying at about the grand unified theory scale between the Planck epoch and the start of inflation. We associate this set of lower scalar and tensor cutoffs with the parity of the multipole expansion of the C(Theta) function. By fitting the Planck 2018 data we compute the multipole coefficients, thereby reproducing the well-known odd -parity preference in angular correlations seen by all three satellite missions: Cosmic Background Explorer, WMAP, and Planck. Our fits improve significantly once tensor modes are included in the analysis, hence providing a hint of the imprints of primordial gravitational waves on the temperature correlations observed in the CMB today. To conclude, we suggest a relationship between, on the one hand, the lack of (positive) large -angle correlations and the odd -parity dominance in the CMB and, on the other hand, the effect of primordial gravitational waves on the CMB temperature anisotropies.  
  Address [Sanchis-Lozano, Miguel -Angel; Sanz, Veronica] Univ Valencia, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: miguel.angel.sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195716600006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6038  
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Melia, F.; Lopez-Corredoira, M.; Sanchis-Gual, N. url  doi
openurl 
  Title Missing large-angle correlations versus even-odd point-parity imbalance in the cosmic microwave background Type Journal Article
  Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 660 Issue Pages A121 - 10pp  
  Keywords cosmological parameters; cosmic background radiation; cosmology: observations; cosmology: theory; inflation; large-scale structure of Universe  
  Abstract Context. The existence of a maximum correlation angle (theta(max) & 60 greater than or similar to degrees) in the two-point angular temperature correlations of cosmic microwave background (CMB) radiation, measured by WMAP and Planck, stands in sharp contrast to the prediction of standard inflationary cosmology, in which the correlations should extend across the full sky (i.e., 180 degrees). The introduction of a hard lower cuto ff (k(min)) in the primordial power spectrum, however, leads naturally to the existence of theta(max). Among other cosmological anomalies detected in these data, an apparent dominance of odd-over-even parity multipoles has been seen in the angular power spectrum of the CMB. This feature, however, may simply be due to observational contamination in certain regions of the sky. Aims. In attempting to provide a more detailed assessment of whether this odd-over-even asymmetry is intrinsic to the CMB, we therefore proceed in this paper, first, to examine whether this odd-even parity imbalance also manifests itself in the angular correlation function and, second, to examine in detail the interplay between the presence of theta(max) and this observed anomaly. Methods. We employed several parity statistics and recalculated the angular correlation function for di fferent values of the cuto ff kmin in order to optimize the fit to the di fferent Planck 2018 data. Results. We find a phenomenological connection between these features in the data, concluding that both must be considered together in order to optimize the theoretical fit to the Planck 2018 data. Conclusions. This outcome is independent of whether the parity imbalance is intrinsic to the CMB, but if it is, the odd-over-even asymmetry would clearly point to the emergence of new physics.  
  Address [Sanchis-Lozano, M-A] Ctr Mixto Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Dr Moliner 50, Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000786712000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5211  
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Barbero, J.F.; Navarro-Salas, J. url  doi
openurl 
  Title Prime Numbers, Quantum Field Theory and the Goldbach Conjecture Type Journal Article
  Year 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 27 Issue 23 Pages 1250136 - 24pp  
  Keywords Quantum field theory; number theory; renormalization; Goldbach conjecture  
  Abstract Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators b(p)(dagger) – labeled by prime numbers p – acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.  
  Address [Sanchis-Lozano, Miguel-Angel; Navarro-Salas, Jose] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308945100007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1173  
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A. url  doi
openurl 
  Title Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 8 Pages 396 - 13pp  
  Keywords cosmic microwave background; angular correlations; inflation; string theory  
  Abstract We interpret the lack of large-angle temperature correlations and the even-odd parity imbalance observed in the cosmic microwave background (CMB) by COBE, WMAP and Planck satellite missions as a possible stringy signal ultimately stemming from a composite inflaton field (e.g., a fermionic condensate). Based on causality arguments and a Fourier analysis of the angular two-point correlation function, two infrared cutoffs k(min)(even,odd) (satisfying k(min)(even) similar or equal to 2k(min)(odd)) are introduced to the CMB power spectrum associated, respectively, with periodic and antiperiodic boundary conditions of the fermionic constituents (echoing the Neveu-Schwarz-Ramond model in superstring theory), without resorting to any particular model.  
  Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, Dept Theoret Phys, Doctor Moliner 50, Burjassot 46011, Spain, Email: miguel.angel.sanchis@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000845107300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5344  
Permanent link to this record
 

 
Author (down) Sanchis-Gual, N.; del Rio, A. url  doi
openurl 
  Title Precessing binary black holes as engines of electromagnetic helicity Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue Pages 044052 - 11pp  
  Keywords  
  Abstract We show that binary black hole mergers with precessing evolution can potentially excite photons from the quantum vacuum in such a way that total helicity is not preserved in the process. Helicity violation is allowed by quantum fluctuations that spoil the electric-magnetic duality symmetry of the classical Maxwell theory without charges. We show here that precessing binary black hole systems in astrophysics generate a flux of circularly polarized gravitational waves which, in turn, provides the required helical background that triggers this quantum effect. Solving the fully nonlinear Einstein’s equations with numerical relativity we explore the parameter space of binary systems and extract the detailed dependence of the quantum effect with the spins of the two black holes. We also introduce a set of diagrammatic techniques that allows us to predict when a binary black hole merger can or cannot emit circularly polarized gravitational radiation, based on mirror-symmetry considerations. This framework allows to understand and to interpret correctly the numerical results, and to predict the outcomes in potentially interesting astrophysical systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6092  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva