Bernal, N., Martin-Albo, J., & Palomares-Ruiz, S. (2013). A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos. J. Cosmol. Astropart. Phys., 08(8), 011–19pp.
Abstract: Annihilation of dark matter particles accumulated in the Sun would produce a flux of high-energy neutrinos whose prospects of detection in neutrino telescopes and detectors have been extensively discussed in the literature. However, for annihilations into Standard Model particles, there would also be a flux of neutrinos in the MeV range from the decays at rest of muons and positively charged pions. These low-energy neutrinos have never been considered before and they open the possibility to also constrain dark matter annihilation in the Sun into e(+)e(-), mu(+)mu(-) or light quarks. Here we perform a detailed analysis using the recent Super-Kamiokande data in the few tens of MeV range to set limits on the WIMP-nucleon scattering cross section for different annihilation channels and computing the evaporation rate of WIMPs from the Sun for all values of the scattering cross section in a consistent way.
|
Bernal, N., Forero-Romero, J. E., Garani, R., & Palomares-Ruiz, S. (2014). Systematic uncertainties from halo asphericity in dark matter searches. J. Cosmol. Astropart. Phys., 09(9), 004–30pp.
Abstract: Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm(3). Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.
|
Bernal, N., Colucci, S., Josse-Michaux, F. X., Racker, J., & Ubaldi, L. (2013). On baryogenesis from dark matter annihilation. J. Cosmol. Astropart. Phys., 10(10), 035–30pp.
Abstract: We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.
|
Berbig, M. (2025). Kick it like DESI: PNGB quintessence with a dynamically generated initial velocity. J. Cosmol. Astropart. Phys., 03(3), 015–46pp.
Abstract: Motivated by the hint for time-dependent dynamical dark energy from an analysis of the DESI Baryon Accoustic Oscillation (BAO) data together with information from the Cosmic Microwave Background (CMB) and Supernovae (SN), we relax the assumption of a vanishing initial velocity for a quintessence field. In particular we focus on pseudo-NambuGoldstone-Boson (PNGB) quintessence in the form of an axion like particle, that can arise as the phase of a complex scalar and could possess derivative couplings to fermions or topological couplings to abelian gauge fields, without upsetting the necessary flatness of its potential. We discuss mechanisms from the aforementioned interactions for sourcing an initial axion field velocity theta(center dot)i at redshifts 3 <= z <= 10, that will “kick” it into motion. Driven by this initial velocity the axion will first roll up in its potential, similar to “freezing” dark energy. After it has reached the pinnacle of its trajectory, it will start to roll down, and behave as “thawing” quintessence. As a proof of concept we undertake a combined fit to BAO, SN and CMB data at the background level. We find that a scenario with theta(center dot)i = O (1) ma, where ma is the axion mass, is slightly preferred over both Lambda CDM and the conventional “thawing” quintessence with theta(center dot)i = 0. The best fit points for this case exhibit transplanckian decay constants and very flat potentials, which both are in tension with conjectures from string theory.
|
Benso, C., Schwetz, T., & Vatsyayan, D. (2025). Large neutrino mass in cosmology and keV sterile neutrino dark matter from a dark sector. J. Cosmol. Astropart. Phys., 04(4), 054–32pp.
Abstract: We consider an extended seesaw model which generates active neutrino masses via the usual type-I seesaw and leads to a large number of massless fermions as well as a sterile neutrino dark matter (DM) candidate in the O(10-100) keV mass range. The dark sector comes into thermal equilibrium with Standard Model neutrinos after neutrino decoupling and before recombination via a U(1) gauge interaction in the dark sector. This suppresses the abundance of active neutrinos and therefore reconciles sizeable neutrino masses with cosmology. The DM abundance is determined by freeze-out in the dark sector, which allows avoiding bounds from X-ray searches. Our scenario predicts a slight increase in the effective number of neutrino species Neff at recombination, potentially detectable by future CMB missions.
|