|   | 
Details
   web
Records
Author (down) LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Search for K0S(L)→μ+μ−μ+μ− decays at LHCb Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages L031102 - 12pp
Keywords
Abstract A search for K0S(L)→μ+μ−μ+μ− decays is performed using proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.1  fb−1. No evidence for signal is found. The 90% confidence level upper limits are the first set for both decays and are B(K0S→μ+μ−μ+μ−)<5.1×10−12 and B(K0L→μ+μ−μ+μ−)<2.3×10−9.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6095
Permanent link to this record
 

 
Author (down) LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Search for Rare Decays of D0 Mesons into Two Muons Type Journal Article
Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 131 Issue 4 Pages 041804 - 13pp
Keywords
Abstract A search for the very rare D^{0}mu^{+}mu^{-} decay is performed using data collected by the LHCb experiment in proton-proton collisions at sqrt[s]=7, 8, and 13TeV, corresponding to an integrated luminosity of 9fb^{-1}. The search is optimized for D^{0} mesons from D^{*+}D^{0}pi^{+} decays but is also sensitive to D^{0} mesons from other sources. No evidence for an excess of events over the expected background is observed. An upper limit on the branching fraction of this decay is set at B(D^{0}mu^{+}mu^{-})<3.1*10^{-9} at a 90% C.L. This represents the world's most stringent limit, constraining models of physics beyond the standard model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MEDLINE:37566853 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6061
Permanent link to this record
 

 
Author (down) Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1050 Issue Pages 168119 - 5pp
Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip
Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001035405300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5601
Permanent link to this record
 

 
Author (down) Lasa-Alonso, J.; Olmos-Trigo, J.; Devescovi, C.; Hernandez, P.; Garcia-Etxarri, A.; Molina-Terriza, G.
Title Resonant helicity mixing of electromagnetic waves propagating through matter Type Journal Article
Year 2023 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.
Volume 5 Issue 2 Pages 023116 - 8pp
Keywords
Abstract Dual scatterers preserve the helicity of an incident field, whereas antidual scatterers flip it completely. In this setting of linear electromagnetic scattering theory, we provide a completely general proof on the nonexistence of passive antidual scatterers. However, we show that scatterers fulfilling the refractive index matching condition flip the helicity of the fields very efficiently without being in contradiction with the law of energy conservation. Moreover, we find that this condition is paired with the impedance matching condition in several contexts of electromagnetism and, in particular, within Fresnel's and Mie's scattering problems. Finally, we show that indexmatched media induce a resonant helicity mixing on the propagating electromagnetic waves. We reach this conclusion by identifying that the refractive index matching condition leads to the phenomenon of avoided crossing.
Address [Lasa-Alonso, Jon; Molina-Terriza, Gabriel] Ctr Fis Mat, Paseo Manuel Lardizabal 5, Donostia San Sebastian 20018, Spain, Email: jonqnanolab@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000999546300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5856
Permanent link to this record
 

 
Author (down) Labiche, M.; Ljungvall, J.; Crespi, F.C.L.; Chen, S.; Bordes, J.; Goasduff, A.; Bottoni, S.; Gamba, E.; Perez-Vidal, R.M.; Bentley, M.A.
Title Simulation of the AGATA spectrometer and coupling with ancillary detectors Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 7 Pages 158 - 12pp
Keywords
Abstract The design study of the AGATA array began with the development of the AGATA simulation code using GEANT4. The latter played a key part in the final design of the array and provided a cost effective solution for the early development of the tracking algorithm. The code has since been maintained and developed by the collaboration to provide more realistic simulations, with reaction chambers, ancillary detectors and surrounding mechanical structures completing the entire setup.
Address [Labiche, M.] Daresbury Lab, Sci & Technol Facil Council STFC, Keckwick Lane, Warrington, England, Email: marc.labiche@stfc.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001032437400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5597
Permanent link to this record