|   | 
Details
   web
Records
Author (down) ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Measurements of differential cross sections of top quark pair production in association with jets in pp collisions at root s=13 TeV using the ATLAS detector Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 159 - 58pp
Keywords Hadron-Hadron scattering (experiments); Jets; Top physics
Abstract Measurements of di ff erential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from pp collisions at p s = 13TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.
Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia, Email: atlas.publications@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000448438000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3812
Permanent link to this record
 

 
Author (down) Angles-Castillo, A.; Perucho, M.; Marti, J.M.; Laing, R.A.
Title On the deceleration of Fanaroff-Riley Class I jets: mass loading of magnetized jets by stellar winds Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 500 Issue 1 Pages 1512-1530
Keywords relativistic processes; stars: winds; outflows; galaxies: active; galaxies: jets
Abstract In this paper, we present steady-state relativistic magnetohydrodynamic simulations that include a mass-load term to study the process of jet deceleration. The mass load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pair plasma jets, with mean stellar mass-losses ranging from 10(-14) to 10(-9) M-circle dot yr(-1). The spatial jet evolution covers similar to 500 pc from jet injection in the grid at 10 pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetized jets. Our results show that toroidal magnetic fields can prevent fast jet expansion and the subsequent embedding of further stars via magnetic tension. In this sense, magnetic fields avoid a runaway deceleration process. Furthermore, when the mass load is large enough to increase the jet density and produce fast, differential jet expansion, the conversion of magnetic energy flux into kinetic energy flux (i.e. magnetic acceleration), helps to delay the deceleration process with respect to non-magnetized jets. We conclude that the typical stellar population in elliptical galaxies cannot explain jet deceleration in classical Fanaroff-Riley type I radio galaxies. However, we observe a significant change in the jet composition, thermodynamical parameters, and energy dissipation along its evolution, even for moderate values of the mass load.
Address [Angles-Castillo, Andreu; Perucho, Manel; Maria Marti, Jose] Univ Valencia, Dept Astron & Astrofis, C Dr Moline 50, E-46100 Valencia, Spain, Email: manel.perucho@uv.es
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000599134600112 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4644
Permanent link to this record