Belle-II DEPFET and PXD Collaboration(Ye, H. et al), Boronat, M., Esperante, D., Fuster, J., Gomis, P., Lacasta, C., et al. (2021). Commissioning and performance of the Belle II pixel detector. Nucl. Instrum. Methods Phys. Res. A, 987, 164875–5pp.
Abstract: The Belle II experiment at the SuperKEKB energy-asymmetric e(+)e(-) collider has completed a series of substantial upgrades and started collecting data in 2019. The experiment is expected to accumulate a data set of 50 ab(-1) to explore new physics beyond the Standard Model at the intensity frontier. The pixel detector (PXD) of Belle II plays a key role in vertex determination. It has been developed using the DEpleted P-channel Field Effect Transistor (DEPFET) technology, which combines low power consumption in the active pixel area and low intrinsic noise with a very small material budget. In this paper, commissioning and performance of the PXD measured with first collision data are presented.
|
Belle II VTX Collaboration(Babeluk, M. et al)., Marinas, C., & Mazorra de Cos, J. (2024). The DMAPS upgrade of the Belle II vertex detector. Nucl. Instrum. Methods Phys. Res. A, 1064, 169428–5pp.
Abstract: The Belle II experiment at KEK in Japan considers an upgrade for the vertex detector system in line with the accelerator upgrade for higher luminosity at long shutdown 2 planned for 2028. One proposal for the upgrade of the vertex detector called VTX aims to improve background robustness and reduce occupancy using small and fast pixels. VTX accommodates the OBELIX depleted monolithic active CMOS pixel sensor (DMAPS) on all five proposed layers. OBELIX is specifically developed for the VTX application and based on the TJ-Monopix2 chip initially developed to meet the requirements of the outer layers of the ATLAS inner tracker (ITk). This paper will review recent tests of the TJ-Monopix2 chip as well as various design aspects of the OBELIX-1 chip currently under development.
|
Becker, R., Buck, A., Casella, C., Dissertori, G., Fischer, J., Howard, A., et al. (2017). The SAFIR experiment: Concept, status and perspectives. Nucl. Instrum. Methods Phys. Res. A, 845, 648–651.
Abstract: The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASIC5 with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.
|
Barrientos, L., Borja-Lloret, M., Etxebeste, A., Muñoz, E., Oliver, J. F., Ros, A., et al. (2021). Performance evaluation of MACACO II Compton camera. Nucl. Instrum. Methods Phys. Res. A, 1014, 165702–7pp.
Abstract: The IRIS group at IFIC-Valencia has developed a second version of a Compton camera prototype for hadron therapy treatment monitoring, with the aim of improving the performance with respect to its predecessor. The system is composed of three Lanthanum (III) bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs). The detector energy resolution has been improved to 5.6% FWHM at 511 keV and an angular resolution of 8.0 degrees has been obtained. Images of a Na-22 point-like source have been reconstructed selecting two and three interaction events. Moreover, the experimental data have been reproduced with Monte Carlo simulations using a Compton camera module (CCMod) in GATE v8.2 obtaining a good correlation.
|
Balibrea-Correa, J., Lerendegui-Marco, J., Calvo, D., Caballero, L., Babiano, V., Ladarescu, I., et al. (2021). A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments. Nucl. Instrum. Methods Phys. Res. A, 985, 164709–8pp.
Abstract: Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.
|