Guo, F. K., Meissner, U. G., Nieves, J., & Yang, Z. (2016). Remarks on the P-c structures and triangle singularities. Eur. Phys. J. A, 52(10), 318–6pp.
Abstract: It was proposed that the narrow P-c(4450) structure observed by the LHCb Collaboration in the reaction Lambda(b) -> J/psi pK might be due to a triangle singularity around the chi(c1)-proton threshold at 4.45 GeV. We discuss the occurrence of a similar triangle singularity in the J/psi p invariant mass distribution for the decay Lambda(b) -> J/psi p pi, which could explain the bump around 4.45 GeV in the data. More precise measurements of this process would provide valuable information towards an understanding of the P-c structures.
|
Guo, F. K., Hidalgo-Duque, C., Nieves, J., & Pavon Valderrama, M. (2013). Consequences of heavy-quark symmetries for hadronic molecules. Phys. Rev. D, 88(5), 054007–5pp.
Abstract: Among the newly observed structures in the heavy-quarkonium mass region, some have been proposed to be hadronic molecules. We investigate the consequences of heavy- quark flavor symmetry on these heavy meson hadronic molecules. The symmetry allows us to predict new hadronic molecules on one hand, and test the hadronic molecular assumption of the observed structures on the other hand. We explore the consequences of the flavor symmetry assuming the X(3872) and Z(b)(10 610) as an isoscalar D (D) over bar* and isovector B (B) over bar* hadronic molecule, respectively. A series of hadronic molecules composed of heavy mesons are predicted. In particular, there is an isoscalar 1(++) B (B) over bar* bound state with a mass about 10 580 MeV which may be searched for in the Y(1S, 2S)pi(+) pi(-) pi(0) mass distribution; the isovector charmonium partners of the Z(b)(10 610) and the Z(b)(10 650) are also predicted, which probably corresponds to the very recently observed Z(c)(3900) and Z(c)(4025) resonances by the BESIII Collaboration.
|
Guo, F. K., Hidalgo-Duque, C., Nieves, J., & Pavon Valderrama, M. (2013). Heavy-antiquark-diquark symmetry and heavy hadron molecules: Are there triply heavy pentaquarks? Phys. Rev. D, 88(5), 054014–6pp.
Abstract: We explore the consequences of heavy flavor, heavy quark spin, and heavy antiquark-diquark symmetries for hadronic molecules within an effective field theory framework. Owing to heavy antiquark-diquark symmetry, the doubly heavy baryons have approximately the same light-quark structure as the heavy antimesons. As a consequence, the existence of a heavy meson-antimeson molecule implies the possibility of a partner composed of a heavy meson and a doubly heavy baryon. In this regard, the D (D) over bar* molecular nature of the X(3872) will hint at the existence of several baryonic partners with isospin I = 0 and J(P) = 5(-)/2 or 3(-)/2. Moreover, if the Z(b)(10650) turns out to be a B*(B) over bar* bound state, we can be confident of the existence of Xi(bb)*(B) over bar* hadronic molecules with quantum numbers I(J(P)) = 1(1(-)/2) and I(J(P)) = 1(3/2(-)). These states are of special interest since they can be considered to be triply heavy pentaquarks.
|
Guo, F. K., Hidalgo-Duque, C., Nieves, J., Ozpineci, A., & Pavon Valderrama, M. (2014). Detecting the long-distance structure of the X(3872). Eur. Phys. J. C, 74(5), 2885–10pp.
Abstract: We study the decay within a molecular picture for the state. This decay mode is more sensitive to the long-distance structure of the resonance than its and decays, which are mainly controlled by the details of the wave function at short distances. We show that the final state interaction can be important, and that a precise measurement of this partial decay width can provide valuable information on the interaction strength between the charm mesons.
|
Geng, L. S., Guo, F. K., Hanhart, C., Molina, R., Oset, E., & Zou, B. S. (2010). Study of the f(2)(1270) , f(2)'(1525) , f(0)(1370) and f(0)(1710) in the J/psi radiative decays. Eur. Phys. J. A, 44(2), 305–311.
Abstract: In this paper we present an approach to study the radiative decay modes of the J/psi into a photon and one of the tensor mesons f (2)(1270) , f' (2)(1525) , as well as the scalar ones f (0)(1370) and f (0)(1710) . Especially, we compare predictions that emerge from a scheme where the states appear dynamically in the solution of vector meson-vector meson scattering amplitudes to those from a (admittedly naive) quark model. We provide evidence that it might be possible to distinguish amongst the two scenarios, once improved data are available.
|
Du, M. L., Guo, F. K., Meissner, U. G., & Yao, D. L. (2017). Study of open-charm 0(+) states in unitarized chiral effective theory with one-loop potentials. Eur. Phys. J. C, 77(11), 728–16pp.
Abstract: Chiral potentials are derived for the interactions between Goldstone bosons and pseudo-scalar charmed mesons up to next-to-next-to-leading order in a covariant chiral effective field theory with explicit vector charmed-meson degrees of freedom. Using the extended-on-mass-shell scheme, we demonstrate that the ultraviolet divergences and the so-called power counting breaking terms can be properly absorbed by the low-energy constants of the chiral Lagrangians. We calculate the scattering lengths by unitarizing the one-loop potentials and fit them to the data extracted from lattice QCD. The obtained results are compared to the ones without an explicit contribution of vector charmed mesons given previously. It is found that the difference is negligible for 5-wave scattering in the threshold region. This validates the use of D-*-less one-loop potentials in the study of the pertinent scattering lengths. We search for dynamically generated open-charm states with J(P) = 0(+) as poles of the 5-matrix on various Riemann sheets. The trajectories of those poles for varying pion masses are presented as well.
|
Du, M. L., Filin, A., Baru, V., Dong, X. K., Epelbaum, E., Guo, F. K., et al. (2023). Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data: Case Study for Tcc(3875)+. Phys. Rev. Lett., 131(13), 131903–7pp.
Abstract: We discuss recent lattice data for the T-cc(3875)(+) state to stress, for the first time, a potentially strong impact of left-hand cuts from the one-pion exchange on the pole extraction for near-threshold exotic states. In particular, if the left-hand cut is located close to the two-particle threshold, which happens naturally in the DD* system for the pion mass exceeding its physical value, the effective-range expansion is valid only in a very limited energy range up to the cut and as such is of little use to reliably extract the poles. Then, an accurate extraction of the pole locations requires the one-pion exchange to be implemented explicitly into the scattering amplitudes. Our findings are general and potentially relevant for a wide class of hadronic near-threshold states.
|
Du, M. L., Baru, V., Guo, F. K., Hanhart, C., Meissner, U. G., Oller, J. A., et al. (2021). Revisiting the nature of the P-c pentaquarks. J. High Energy Phys., 08(8), 157–50pp.
Abstract: The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.
|
Du, M. L., Baru, V., Dong, X. K., Filin, A., Guo, F. K., Hanhart, C., et al. (2022). Coupled-channel approach to T-cc(+) including three-body effects. Phys. Rev. D, 105(1), 014024–19pp.
Abstract: A coupled-channel approach is applied to the charged tetraquark state T-cc(+). recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body (DD0)-D-0 pi(+) channel. Special attention is paid to the three-body dynamics in the T-cc(+) due to the finite life time of the D*. An approach to the T-cc(+) is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D* mesons and the finite D* width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The (DD0)-D-0 and (DD+)-D-0 invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D* D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T-cc(+) is found to be close to unity, which implies that the T-cc(+) is a hadronic molecule generated by the interactions in the D*D-+(0) and D*D-0(+) channels. Employing heavy-quark spin symmetry, an isoscalar D* D* molecular partner of the T-cc(+) with J(P) = 1(+ )is predicted under the assumption that the DD* -D* D* coupled-channel effects can be neglected.
|
Du, M. L., Albaladejo, M., Guo, F. K., & Nieves, J. (2022). Combined analysis of the Z(c)(3900) and the Z(cs)(3985) exotic states. Phys. Rev. D, 105(7), 074018–20pp.
Abstract: We have performed a combined analysis of the BESIII data for both the Z(c)(3900) and Z(cs)(3985) structures, assuming that the latter is an SU(3) flavor partner of the former one. We have improved on the previous analysis of Albaladejo et al. [Phys. Lett. B 755, 337 (2016)] by computing the amplitude for the D-1(D) over barD* triangle diagram considering both D- and S-wave D1D*x couplings. We have also investigated effects from SU(3) light-flavor violations, which are found to be moderate and of the order of 20%. The successful reproduction of the BESIII spectra, in both the hidden-charm and hidden-charm strange sectors, strongly supports that the Z(cs)(3985) and Z(c)(3900) are SU(3) flavor partners placed in the same octet multiplet. The best results are obtained when an energy-dependent term in the diagonal D(*) (D) over bar ((s))((*)) interaction is included, leading to resonances (poles above the thresholds) to describe these exotic states. We have also made predictions for the isovector Z*c and isodoublet Z*(cs), D*(D) over bar*, and D*??D*s molecules, with J(PC) = 1(+-) and J(P) = 1(+), respectively. These states would be heavy-quark spin symmetry (HQSS) partners of the Z(c) and Z(cs). Besides the determination of the masses and widths of the Z(c)(3900) and Z(cs)(3985), we also predict those of the Z*(c) and Z*(cs) resonances.
|