|   | 
Details
   web
Records
Author (down) Carrasco, N.; Ciuchini, M.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lubicz, V.; Michael, C.; Picca, E.; Rossi, G.C.; Sanfilippo, F.; Shindler, A.; Silvestrini, L.; Simula, S.; Tarantino, C.
Title B-physics from N-f=2 tmQCD: the Standard Model and beyond Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 016 - 52pp
Keywords Lattice QCD; B-Physics; Beyond Standard Model; Quark Masses and SM Parameters
Abstract We present a lattice QCD computation of the b-quark mass, the B and B-s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for xi and f(Bq) root B-i((q)) extrapolated to the continuum limit and to the physical pion mass. We used N-f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m(b)(m(b), (MS) over bar) = 4.29(12) GeV, f(Bs) = 228(8) MeV, f(B) = 189(8) MeV and f(Bs)/f(B) = 1.206(24). Moreover with our results for the bag-parameters we find xi = 1.225(31), B-1((s))/B-1((d)) = 1.01(2), f (Bd) root(B) over cap ((d))(1) = 216(10) MeV and integral Bs root(B) over cap ((s))(1) = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B-(s) -(B) over bar ((s)) mixing.
Address [Carrasco, N.; Gimenez, V.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: nuria.carrasco@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347824200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2086
Permanent link to this record
 

 
Author (down) Bertone, V.; Carrasco, N.; Ciuchini, M.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Lubicz, V.; Martinelli, G.; Mescia, F.; Papinutto, M.; Rossi, G.C.; Silvestrini, L.; Simula, S.; Tarantino, C.; Vladikas, A.
Title Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 089 - 53pp
Keywords Lattice QCD; Beyond Standard Model
Abstract We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of the renormalization constants has been performed non-perturbatively in the RI-MOM scheme. Based on simulations at four values of the lattice spacing and a number of quark masses we have extrapolated/interpolated our results to the continuum limit and physical light/strange quark masses.
Address Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany, Email: valerio.bertone@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000317522400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1438
Permanent link to this record
 

 
Author (down) Baron, R.; Boucaud, P.; Dimopoulos, P.; Frezzotti, R.; Palao, D.; Rossi, G.; Farchioni, F.; Munster, G.; Sudmann, T.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Simula, S.; Michael, C.; Scorzato, L.; Shindler, A.; Urbach, C.; Wenger, U.
Title Light meson physics from maximally twisted mass lattice QCD Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 097 - 41pp
Keywords Lattice QCD; Quark Masses and SM Parameters; QCD
Abstract We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N-f = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 less than or similar to m(PS) less than or similar to 650MeV we control the major systematic effects of our calculation. This enables us to confront our N-f = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.
Address [Baron, Remi; Boucaud, Phillip] Univ Paris 11, Phys Theor Lab, Ctr Orsay, F-91405 Orsay, France, Email: remi.baron@centraliens.net
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282367800036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 348
Permanent link to this record
 

 
Author (down) Baron, R.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; McNeile, C.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pene, O.; Urbach, C.; Wagner, M.; Wenger, U.
Title Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 111 - 31pp
Keywords Lattice QCD; Chiral Lagrangians
Abstract
Address [Deuzeman, A.; Pallante, E.; Urbach, C.] Univ Groningen, Ctr Theoret Phys, NL-9747 AG Groningen, Netherlands, Email: e.pallante@rug.nl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000279630800058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 415
Permanent link to this record
 

 
Author (down) ATLAS Tile Calorimeter Community (Abdallah, J. et al); Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title The optical instrumentation of the ATLAS Tile Calorimeter Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P01005 - 21pp
Keywords Calorimeters; Calorimeter methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
Address [Dawson, J.; Drake, G.; Guarino, V.; Hill, N.; LeCompte, T.; Nodulman, L.; Price, E.; Proudfoot, J.; Schlereth, J.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Argonne, IL 60439 USA, Email: Tomas.Davidek@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320665400062 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1515
Permanent link to this record
 

 
Author (down) ATLAS Tile Calorimeter Community (Abdallah, J. et al); Calderon, D.; Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title Mechanical construction and installation of the ATLAS tile calorimeter Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T11001 - 26pp
Keywords Detector design and construction technologies and materials; Calorimeters
Abstract This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.
Address [Abdallah, J.; Calderon, D.; Castillo, M. V.; Costello, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls, J. A.] Univ Valencia, CSIC, Ctr Mixto, IFIC, E-46100 Valencia, Spain, Email: Proudfoot@anl.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1696
Permanent link to this record
 

 
Author (down) ATLAS Collaboration (Adragna, P. et al); Castelo, J.; Castillo Gimenez, V.; Cuenca, C.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 615 Issue 2 Pages 158-181
Keywords Calorimeter; Test-beam; ATLAS; Monte Carlo simulation; GEANT4; Hadronic shower development; Pion-proton response; Longitudinal shower profile for hadrons
Abstract The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.
Address [Hakobyan, H.; Simonyan, M.] Yerevan Phys Inst, Yerevan 375036, Armenia, Email: Margar.Simonyan@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000276299900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 252
Permanent link to this record
 

 
Author (down) ATLAS Collaboration (Abat, E. et al); Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Mitsou, V.A.; Ruiz, A.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 621 Issue 1-3 Pages 134-150
Keywords ATLAS; Calorimetry; Test-beam; Calibration; Simulation
Abstract A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.
Address [Abata, E.; Arik, E.; Cetin, S. A.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey, Email: atlassecretariat@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000281109100019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 389
Permanent link to this record
 

 
Author (down) ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Combined performance studies for electrons at the 2004 ATLAS combined test-beam Type Journal Article
Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 5 Issue Pages P11006 - 68pp
Keywords Particle tracking detectors; Transition radiation detectors; Calorimeters; Large detector systems for particle and astroparticle physics
Abstract In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.
Address Univ Alberta, Ctr Particle Phys, Dept Phys, Edmonton, AB T6G 2G7, Canada, Email: robert.froesch1@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000285051500031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 311
Permanent link to this record
 

 
Author (down) ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P06001 - 35pp
Keywords Calorimeter methods; Pattern recognition, cluster finding, calibration and fitting methods; Calorimeters; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
Address [Wheeler, S] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada[Bernabeu, J; Castillo, MV; Costa, MJ; Escobar, C; Ferrer, A; Garcia, C; Gonzalez-Sevilla, S; Higon, E; Lacasta, C; Garcia, SMI; Mitsou, VA; Ruiz, A; Solans, C; Valero, A; Valls, JA] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain, Email: kjg@particle.kth.se
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294492600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 744
Permanent link to this record