toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Pla, S.; Winstanley, E. url  doi
openurl 
  Title Equivalence of the adiabatic expansion and Hadamard renormalization for a charged scalar field Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 2 Pages 025004 - 22pp  
  Keywords  
  Abstract We examine the relationship between three approaches (Hadamard, DeWitt-Schwinger, and adiabatic) to the renormalization of expectation values of field operators acting on a charged quantum scalar field. First, we demonstrate that the DeWitt-Schwinger representation of the Feynman Green's function is a particular case of the Hadamard representation. Next, we restrict attention to a spatially flat Friedmann-Lemaitre-Robertson-Walker universe with time-dependent, purely electric, background electromagnetic field, considering two-, three-, and four-dimensional space-times. Working to the order required for the renormalization of the stress-energy tensor, we find the adiabatic and DeWitt-Schwinger expansions of the Green's function when the space-time points are spatially separated. In two and four dimensions, the resulting DeWitt-Schwinger and adiabatic expansions are identical. In three dimensions, the DeWittSchwinger expansion contains terms of adiabatic order 4 that are not necessary for the renormalization of the stress-energy tensor and hence absent in the adiabatic expansion. The equivalence of the DeWittSchwinger and adiabatic approaches to renormalization in the scenario considered is thereby demonstrated in even dimensions. In odd dimensions the situation is less clear and further investigation is required in order to determine whether adiabatic renormalization is a locally covariant renormalization prescription.  
  Address [Pla, Silvia] Kings Coll London, Dept Phys, Strand Bldg,Strand Campus, London WC2R 2LS, England, Email: silvia.pla_garcia@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085808200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5756  
Permanent link to this record
 

 
Author (down) Pla, S.; Newsome, I.M.; Link, R.S.; Anderson, P.R.; Navarro-Salas, J. url  doi
openurl 
  Title Pair production due to an electric field in 1+1 dimensions and the validity of the semiclassical approximation Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 10 Pages 105003 - 23pp  
  Keywords  
  Abstract Solutions to the backreaction equation in 1 + 1-dimensional semiclassical electrodynamics are obtained and analyzed when considering a time-varying homogeneous electric field initially generated by a classical electric current, coupled to either a quantized scalar field or a quantized spin-1/2 field. Particle production by way of the Schwinger effect leads to backreaction effects that modulate the electric field strength. Details of the particle production process are investigated along with the transfer of energy between the electric field and the particles. The validity of the semiclassical approximation is also investigated using a criterion previously implemented for chaotic inflation and, in an earlier form, semiclassical gravity. The criterion states that the semiclassical approximation will break down if any linearized gauge-invariant quantity constructed from solutions to the linear response equation, with finite nonsingular data, grows rapidly for some period of time. Approximations to homogeneous solutions of the linear response equation are computed and it is found that the criterion is violated when the maximum value, E-max, obtained by the electric field is of the order of the critical scale for the Schwinger effect, E-max similar to E-crit m(2)/q, where m is the mass of the quantized field and q is its electric charge. For these approximate solutions the criterion appears to be satisfied in the extreme limits qE(max)/m(2) << 1 and qE(max)/m(2) >> 1.  
  Address [Pla, Silvia; Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia, Fac Fis, CSIC,Dept Fis Teor, E-46100 Valencia, Spain, Email: silvia.pla@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655874700008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4844  
Permanent link to this record
 

 
Author (down) Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title (F, G)-summed form of the QED effective action Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 8 Pages L081702 - 7pp  
  Keywords  
  Abstract We conjecture that the proper-time series expansion of the one-loop effective Lagrangian of quantum electrodynamics can be summed in all terms containing the field-strength invariants F = 1/4F F-mu nu(mu nu) (x), G = 1/4 (F) over tilde F-mu nu(mu nu) (x), including those also possessing derivatives of the electromagnetic field strength. This partial resummation is exactly encapsulated in a factor with the same form as the Heisenberg-Euler Lagrangian density, except that now the electric and magnetic fields can depend arbitrarily on spacetime coordinates. We provide strong evidence for this conjecture, which is proved to sixth order in the proper time. Furthermore, and as a byproduct, we generate some solvable electromagnetic backgrounds. We also discuss the implications for a generalization of the Schwinger formula for pair production induced by nonconstant electric fields. Finally, we briefly outline the extension of these results in the presence of gravity.  
  Address [Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Dept Fis Teor, Valencia 46100, Spain, Email: jnavarro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000649081100005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4834  
Permanent link to this record
 

 
Author (down) Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Particle Creation and the Schwinger Model Type Journal Article
  Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 11 Pages 2435 - 9pp  
  Keywords Schwinger model; semiclassical theory; particle creation  
  Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.  
  Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000895122100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5432  
Permanent link to this record
 

 
Author (down) Nadal-Gisbert, S.; Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Low-energy states and CPT invariance at the big bang Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 8 Pages 085018 - 16pp  
  Keywords  
  Abstract In this paper, we analyze the quantum vacuum in a radiation-dominated and CPT -invariant universe by further imposing the quantum states to be ultraviolet regular i.e., satisfying the Hadamard/adiabatic condition. For scalar fields, this is enforced by constructing the vacuum via the states of low-energy proposal. For spin -12 fields, we extend this proposal for a FLRW spacetime and apply it for the radiation-dominated and CPT -invariant universe. We focus on minimizing the smeared energy density around the big bang and give strong evidence that the resulting states satisfy the Hadamard/adiabatic condition. These states are then self -consistent candidates as effective big bang quantum vacuum from the field theory perspective.  
  Address [Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia, CSIC Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: sergi.nadal@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000981997800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva