toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Yao, D.L.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title New parametrization of the form factors in (B)over-bar -> Dl(nu)over-bar(l) decays Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 3 Pages 034014 - 7pp  
  Keywords  
  Abstract A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic (B) over bar -> Dl (nu) over bar (l) decay. By a combined consideration of the recent experimental and lattice QCD data, we determine precisely the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar = 41.01(75) x 10(-3) and the ratio R-D = BR((B) over bar -> D tau(nu) over bar (tau))/BR((B) over bar -> Dl (nu) over bar (l)) = 0.301(5). The coefficients in this parametrization, related to phase shifts by sumrulelike dispersion relations and hence called phase moments, encode important scattering information of the (B) over bar (D) over bar interactions which are poorly known so far. Thus, we give strong hints about the existence of at least one bound and one virtual (B) over bar (D) over bar S-wave 0(+) states, subject to uncertainties produced by potentially sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by the weak b -> c transition.  
  Address [Yao, De-Liang] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513217400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4277  
Permanent link to this record
 

 
Author (down) Yao, D.L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Heavy-to-light scalar form factors from Muskhelishvili-Omnes dispersion relations Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue 4 Pages 310 - 26pp  
  Keywords  
  Abstract By solving the Muskhelishvili-Omnes integral equations, the scalar form factors of the semileptonic heavy meson decays D -> pi(l) over bar nu(l), D -> (K) over bar(l) over bar nu(l), (K) over bar -> pi(l) over bar nu(l) and (B) over bar (s) -> Kl (nu) over bar (l) are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q(2)=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q(2)=0, we obtain |V-cd| = 0.244 +/- 0.022, |V-cs| = 0.945 +/- 0.041 and |V-ub| = (4.3 +/- 0.7)x10(-3) for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q(2) = 0: |f(+)(D ->eta)(0)| = 0.01 +/- 0.05, |f(+)(Ds ->eta)(0)| = 0.50 +/- 0.08, |f(+)(Ds ->eta)(0)| = 0.73 +/- 0.03 and|f(+)((B) over bar ->eta)(0)| = 0.82 +/- 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q(2)-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.  
  Address [Yao, D. -L.; Fernandez-Soler, P.; Nieves, J.] UV, Inst Invest Paterna, Ctr Mixto, Inst Fis Corpuscular,CSIC, Apartado 22085, Valencia, Spain, Email: deliang.yao@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430575000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3568  
Permanent link to this record
 

 
Author (down) Yang, Z.; Cao, X.; Guo, F.K.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Strange molecular partners of the Z(c)(3900) and Z(c)(4020) Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 7 Pages 074029 - 8pp  
  Keywords  
  Abstract Quantum chromodynamics presents a series of exact and approximate symmetries which can be exploited to predict new hadrons from previously known ones. The Z(c)(3900) and Z(c)(4020), which have been theorized to be isovector D*(D) over bar and D*(D) over bar* molecules [I-G(J(PC)) = 1(-)(1)(+-))], are no exception. Here we argue that from SU(3)-flavor symmetry, we should expect the existence of strange partners of the Z(c)'s with hadronic molecular configurations D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) (or, equivalently, quark content c (c) over bars (q) over bar, with q = u, d). The quantum numbers of these Z(cs) and Z(cs)* structures would be I(J(P)) = 1/2 (1(+)). The predicted masses of these partners depend on the details of the theoretical scheme used, but they should be around the D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) thresholds, respectively. Moreover, any of these states could be either a virtual pole or a resonance. We show that, together with a possible triangle singularity contribution, such a picture nicely agrees with the very recent BESIII data of the e(+)e(-) -> K+((Ds-D*0) + D*D--(s)0).  
  Address [Yang, Zhi] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China, Email: zhiyang@uestc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000648581900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4832  
Permanent link to this record
 

 
Author (down) Yamagata-Sekihara, J.; Nieves, J.; Oset, E. url  doi
openurl 
  Title Couplings in coupled channels versus wave functions in the case of resonances: Application to the two A(1405) states Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 1 Pages 014003 - 15pp  
  Keywords  
  Abstract In this paper we develop a formalism to evaluate wave functions in momentum and coordinate space for the resonant states dynamically generated in a unitary coupled channel approach. The on-shell approach for the scattering matrix, commonly used, is also obtained in quantum mechanics with a separable potential, which allows one to write wave functions in a trivial way. We develop useful relationships among the couplings of the dynamically generated resonances to the different channels and the wave functions at the origin. The formalism provides an intuitive picture of the resonances in the coupled channel approach, as bound states of one bound channel, which decays into open ones. It also provides an insight and practical rules for evaluating couplings of the resonances to external sources and how to deal with final state interaction in production processes. As an application of the formalism we evaluate the wave functions of the two A(1405) states in the pi Sigma, (K) over barN, and other coupled channels. It also offers a practical way to study three-body systems when two of them cluster into a resonance.  
  Address [Yamagata-Sekihara, J.; Oset, E.] Univ Valencia, Dept Fis Teor, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286761200002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 582  
Permanent link to this record
 

 
Author (down) Yamagata-Sekihara, J.; Garcia-Recio, C.; Nieves, J.; Salcedo, L.L.; Tolos, L. url  doi
openurl 
  Title Formation spectra of charmed meson-nucleus systems using an antiproton beam Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 754 Issue Pages 26-32  
  Keywords Charmed mesic nuclei; Formation spectra; DN and (D)over-barN interaction; Klein-Gordon equation; Green's function method  
  Abstract We investigate the structure and formation of charmed meson--nucleus systems, with the aim of understanding the charmed meson-nucleon interactions and the properties of the charmed mesons in the nuclear medium. The (D) over bar mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the (D) over barN pair. Employing an effective model for the (D) over barN and DN interactions and solving the Klein-Gordon equation for (D) over bar and D in finite nuclei, we find that the D0-11B system has 1s and 2p mesic nuclear states and that the D0-11B system binds in a 1s state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the [(D) over bar B--11] and [D-0-B-11] mesic nuclei for an antiproton beam on a C-12 target. Our results suggest that it is possible to observe the 2p D- mesic nuclear state with an appropriate experimental setup.  
  Address [Yamagata-Sekihara, J.] Oshima Coll, Natl Inst Technol, Yamaguchi 7422193, Japan, Email: yamagata@oshima-k.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369601000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2570  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva