|   | 
Details
   web
Records
Author (down) Wang, Y.F.; Yao, D.L.; Zheng, H.Q.
Title On the existence of N*(890) resonance in S-11 channel of N scatterings Type Journal Article
Year 2019 Publication Frontiers of Physics Abbreviated Journal Front. Phys.
Volume 14 Issue 2 Pages 24501 - 6pp
Keywords dispersion relations; N scatterings; nucleon resonance
Abstract Low-energy partial-wave N scattering data is reexamined with the help of the production representation of partial-wave S matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of O(p(3)) chiral perturbative amplitudes obtained in the extended-onmass- shell scheme. In S-11 and P-11 channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a S-11 resonance pole locates at zr = (0:895-0:081)-(0:164-0:023)i GeV, on the complex s-plane. On the other hand, a P-11 virtual pole, as an accompanying partner of the nucleon bound-state pole, locates atzv = (0:966-0:018) GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the O(p(3)) calculation greatly improves the fit quality comparing with the previous O(p(2)) one.
Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: deliang.yao@ific.uv.es
Corporate Author Thesis
Publisher Higher Education Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0462 ISBN Medium
Area Expedition Conference
Notes WOS:000454564100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3857
Permanent link to this record
 

 
Author (down) Wang, Y.F.; Yao, D.L.; Zheng, H.Q.
Title New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level Type Journal Article
Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 43 Issue 6 Pages 064110 - 22pp
Keywords dispersion relations; pion-nucleon scattering; chiral perturbation theory
Abstract A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.
Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yaodeliang@pku.edu.cn
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000468501700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4020
Permanent link to this record
 

 
Author (down) Wang, E.; Xie, J.J.; Geng, L.S.; Oset, E.
Title The X(4140) and X(4160) resonances in the e(+)e(-) -> gamma J/psi phi reaction Type Journal Article
Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 43 Issue 11 Pages 113101 - 10pp
Keywords X(4140); J/psi phi scattering; heavy flavor hadrons; X(4160)
Abstract We investigate the J/psi phi invariant mass distribution in the e(+)e(-) -> gamma J/psi phi reaction at a center-of-mass energy of root s = 4.6 GeV measured by the BESIII collaboration, which concluded that no significant signals were observed for e(+)e(-) -> gamma J/psi phi because of the low statistics. We show, however, that the J/psi phi invariant mass distribution is compatible with the existence of the X(4140) state, appearing as a peak, and a strong cusp structure at the D-s*(D) over bar (s)* threshold, resulting from the molecular nature of the X(4160) state, which provides a substantial contribution to the reaction. This is consistent with our previous analysis of the B+ -> J psi phi K+ decay measured by the LHCb collaboration. We strongly suggest further measurements of this process with more statistics to clarify the nature of the X(4140) and X(4160) resonances.
Address [Wang, En; Xie, Ju-Jun; Geng, Li-Sheng] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Henan, Peoples R China, Email: lisheng.geng@buaa.edu.cn
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000493109100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4187
Permanent link to this record
 

 
Author (down) Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M.J.
Title Nuclear medium modification of the F2(x, Q^2) structure function Type Journal Article
Year 2011 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 857 Issue 1 Pages 29-41
Keywords Structure function; Nuclear medium effects; Deep inelastic scattering; Local density approximation
Abstract We study the nuclear effects in the electromagnetic structure function F-2(x, Q(2)) in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. The ratios R-F2(A) (x, Q(2)) = 2F(2)(A)(x, Q(2))/AF(2)(D)(x, Q(2)) are obtained and compared with recent JLab results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non-trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.
Address [Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes ISI:000290607500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 627
Permanent link to this record
 

 
Author (down) Romero-Lopez, F.; Sharpe, S.R.; Blanton, T.D.; Briceno, R.A.; Hansen, M.T.
Title Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 007 - 43pp
Keywords Lattice QCD; Scattering Amplitudes
Abstract In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles.
Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000497979000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4207
Permanent link to this record