|   | 
Details
   web
Records
Author (down) Navarro, J.; Guardiola, R.
Title Thermal Effects on Small Para-Hydrogen Clusters Type Journal Article
Year 2011 Publication International Journal of Quantum Chemistry Abbreviated Journal Int. J. Quantum Chem.
Volume 111 Issue 2 Pages 463-471
Keywords atomic and molecular clusters; phase transitions in clusters; structure of clusters; molecular hydrogen and isotopes
Abstract A brief review of different quantum Monte Carlo simulations of small (p-H-2)(N) clusters is presented. The clusters are viewed as a set of N structureless p-H-2 molecules, interacting via an isotropic pairwise potential. Properties as superfluidity, magic numbers, radial structure, excitation spectra, and abundance production of (p-H-2)(N) clusters are discussed and, whenever possible, a comparison with He-4(N) droplets is presented. All together, the simulations indicate that temperature has a paradoxical effect of the properties of (p-H-2)(N) clusters, as they are solid-like at high T and liquid-like at low T, due to quantum delocalization at the lowest temperature.
Address [Navarro, Jesus; Guardiola, Rafael] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain, Email: navarro@ific.uv.es
Corporate Author Thesis
Publisher John Wiley & Sons Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7608 ISBN Medium
Area Expedition Conference
Notes ISI:000285311400028 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 589
Permanent link to this record
 

 
Author (down) Maji, R.; Park, W.I.
Title Supersymmetric U(1)B-L flat direction and NANOGrav 15 year data Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 015 - 19pp
Keywords Cosmic strings; domain walls; monopoles; cosmological phase transitions; cosmology of theories beyond the SM; gravitational waves / sources
Abstract We show that, when connected with monopoles, the flat D-flat direction breaking the local U(1)B-L symmetry as an extension of the minimal supersymmetric standard model can be responsible for the signal of a stochastic gravitational wave background recently reported by NANOGrav collaborations, while naturally satisfying constraints at high frequency band. Thanks to the flatness of the direction, a phase of thermal inflation arises naturally. The reheating temperature is quite low, and suppresses signals at frequencies higher than the characteristic frequency set by the reheating temperature. Notably, forthcoming spaced based experiments such as LISA can probe the cutoff frequency, providing an indirect clue of the scale of soft SUSY-breaking mass parameter.
Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct Universe, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001147733000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5967
Permanent link to this record
 

 
Author (down) Jeong, K.S.; Park, W.I.
Title Cosmology with a supersymmetric local B – L model Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 016 - 34pp
Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology
Abstract We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.
Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001149204000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5992
Permanent link to this record
 

 
Author (down) Horvat, S.; Magas, V.K.; Strottman, D.D.; Csernai, L.P.
Title Entropy development in ideal relativistic fluid dynamics with the Bag Model equation of state Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 692 Issue 4 Pages 277-280
Keywords Quark deconfinement; Quark-gluon plasma production; Phase transitions; Relativistic heavy-ion collisions; Hydrodynamic models
Abstract We consider an idealized situation where the Quark-Gluon Plasma (QGP) is described by a perfect, (3 + 1)-dimensional fluid dynamic model starting from an initial state and expanding until a final state where freeze-out and/or hadronization takes place. We study the entropy production with attention to effects of (i) numerical viscosity, (ii) late stages of flow where the Bag Constant and the partonic pressure are becoming similar, (iii) and the consequences of final freeze-out and constituent quark matter formation.
Address [Horvat, Sz; Csernai, L. P.] Univ Bergen, Inst Phys & Technol, N-5007 Bergen, Norway, Email: szhorvat@ift.uib.no
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000282249400011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 375
Permanent link to this record
 

 
Author (down) Ghoshal, A.; Gouttenoire, Y.; Heurtier, L.; Simakachorn, P.
Title Primordial black hole archaeology with gravitational waves from cosmic strings Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 196 - 43pp
Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe; Specific BSM Phenomenology
Abstract Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.
Address [Ghoshal, Anish] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland, Email: anish.ghoshal@fuw.edu.pl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001188227600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5994
Permanent link to this record