|   | 
Details
   web
Records
Author (down) Toledo, G.; Ikeno, N.; Oset, E.
Title Theoretical study of the D-0 -> K-pi(+)eta reaction Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages 268 - 11pp
Keywords
Abstract We develop a model to study the D-0 -> K-pi(+)eta weak decay, starting with the color favored external emission and Cabibbo favored mode at the quark level. A less favored internal emission decay mode is also studied as a source of small corrections. Some pairs of quarks are allowed to hadronize producing two pseudoscalar mesons, which posteriorly are allowed to interact to finally provide the K-pi(+)eta state. The chiral unitary approach is used to take into account the final state interaction of pairs of mesons, which has as a consequence the production of the kappa (K-0*(700)) and the a(0)(980) resonances, well visible in the invariant mass distributions. We also introduce the (K) over bar*(0)eta production in a phenomenological way and show that the s-wave pseudoscalar interaction together with this vector excitation mode are sufficient to provide a fair reproduction of the experimental data. The model provides the relative weight of the a(0)(980) to the kappa excitation, and their strength is clearly visible in the low energy part of the K pi spectrum.
Address [Toledo, Genaro] Univ Nacl Autonoma Mexico, Inst Fis, AP 20-364, Mexico City 01000, DF, Mexico, Email: toledo@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000636246200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4776
Permanent link to this record
 

 
Author (down) Tani, A.; Ikeno, N.; Jido, D.; Nagahiro, H.; Fujioka, H.; Itahashi, K.; Hirenzaki, S.
Title Structure of double pionic atoms Type Journal Article
Year 2021 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume 2021 Issue 3 Pages 033D02 - 16pp
Keywords
Abstract We study theoretically the structure of double pionic atoms, in which two negatively charged pions (pi(-)) are bound in the atomic orbits. The double pionic atom is considered to be an interesting system from the point of view of the multi-bosonic systems. In addition, it could be possible to deduce valuable information on the isospin I = 2 pi pi interaction and the pionnucleus strong interaction. In this paper, we take into account the pi pi strong and electromagnetic interactions, and evaluate the effects on the binding energies by perturbation theory for the double pionic atoms in heavy nuclei. We investigate several combinations of two pionic states and find that the order of magnitude of the energy shifts due to the pi pi interaction is around 10 keV for the strong interaction and around 100 keV for the electromagnetic interaction for the ground states.
Address [Tani, Akari; Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000642331700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4802
Permanent link to this record
 

 
Author (down) Molina, R.; Ikeno, N.; Oset, E.
Title Sequential single pion production explaining the dibaryon “d*(2380)” peak Type Journal Article
Year 2023 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 47 Issue 4 Pages 041001 - 10pp
Keywords dibaryon; sequential mechanism; explanation
Abstract In this study, we investigate the two step sequential one pion production mechanism, that is, np(I=0)->pi(-)pp followed by the fusion reaction pp ->pi(+)d, to describe the np ->pi(+)pi(-)d reaction with in state I = 0 . In this reaction, a narrow peak identified with a “ d(2380) ” dibaryon has been previously observed. We discover that the second reaction step pp ->pi(+)d is driven by a triangle singularity that determines the position of the peak of the reaction and the high strength of the cross section. The combined cross section of these two mechanisms produces a narrow peak with a position, width, and strength, that are compatible with experimental observations within the applied approximations made. This novel interpretation of the peak accomplished without invoking a dibaryon explains why this peak has remained undetected in other reactions.
Address [Molina, R.; Ikeno, Natsumi; Oset, Eulogio] Univ Valencia, Ctr Mixto, Inst Invest Paterna, CSIC,Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000940915300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5485
Permanent link to this record
 

 
Author (down) Liang, W.H.; Ikeno, N.; Oset, E.
Title Upsilon(nl) decay into B(*) (B)over-bar(*) Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 803 Issue Pages 135340 - 6pp
Keywords
Abstract We have evaluated the decay modes of the Upsilon(4s), Upsilon(3d), Upsilon(5s), Upsilon(6s) states into B (B) over bar, B (B) over bar* + c.c., B* (B) over bar*, B-s(B) over bar (s), B-s(B) over bar (s)* + c.c., B-s* (B) over bar (s)* using the P-3(0) model to hadronize the bb vector seed, fitting some parameters to the data. We observe that the Upsilon(4s) state has an abnormally large amount of mesonmeson components in the wave function, while the other states are largely b (b) over bar. We predict branching ratios for the different decay channels which can be contrasted with experiment for the case of the Upsilon(5s) state. While globally the agreement is fair, we call the attention to some disagreement that could be a warning for the existence of more elaborate components in the state.
Address [Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000521730300046 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4355
Permanent link to this record
 

 
Author (down) Ikeno, N.; Yamagata-Sekihara, J.; Nagahiro, H.; Jido, D.; Hirenzaki, S.
Title Formation of heavy-meson bound states by two-nucleon pick-up reactions Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue 5 Pages 054609 - 7pp
Keywords
Abstract We develop a model to evaluate the formation rate of the heavy mesic nuclei in two-nucleon pick-up reactions and apply it to the (6)Li target cases for the formation of heavy meson-alpha bound states, as examples. The existence of the quasideuteron in the target nucleus is assumed in this model. It is found that mesic nuclei formation in recoilless kinematics is possible even for heavier mesons than the nucleon in two-nucleon pick-up reactions. We find the formation rate of the meson-alpha bound states can be around half of the elementary cross sections at the recoilless kinematics with small distortions.
Address [Ikeno, N; Nagahiro, H; Hirenzaki, S] Nara Womans Univ, Dept Phys, Nara 6308506, Japan
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000296881200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 798
Permanent link to this record