|   | 
Details
   web
Records
Author (down) Giusarma, E.; Corsi, M.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.; Pandolfi, S.
Title Constraints on massive sterile neutrino species from current and future cosmological data Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 11 Pages 115023 - 10pp
Keywords
Abstract Sterile massive neutrinos are a natural extension of the standard model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states, as well as on the number of sterile states. The so-called (3 + 2) models, with three sub-eV active massive neutrinos plus two sub-eV massive sterile species, is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, big bang nucleosynthesis bounds compromise the viability of (3 + 2) models. Forecasts from future cosmological data on the active and sterile neutrino parameters are also presented. Independent measurements of the neutrino mass from tritium beta-decay experiments and of the Hubble constant could shed light on sub-eV massive sterile neutrino scenarios.
Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000292039800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 660
Permanent link to this record
 

 
Author (down) Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.
Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 8 Pages 083522 - 9pp
Keywords
Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.
Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000303118100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 984
Permanent link to this record
 

 
Author (down) Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M.
Title Neutrino masses and their ordering: global data, priors and models Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 011 - 22pp
Keywords neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay
Abstract We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.
Address [Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000445497200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3736
Permanent link to this record
 

 
Author (down) Diamanti, R.; Giusarma, E.; Mena, O.; Archidiacono, M.; Melchiorri, A.
Title Dark radiation and interacting scenarios Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 6 Pages 063509 - 8pp
Keywords
Abstract An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of two larger when considering interacting scenarios. If future Cosmic Microwave Background data are analyzed assuming a noninteracting model but the dark radiation and the dark matter sectors interact in nature, the reconstructed values for the effective velocity and for the viscosity parameter will be shifted from their standard 1/3 expectation, namely c(eff)(2) = 0.34(-0.003)(+0.006) and c(vis)(2) = 0.29(-0.001)(+0.002) at 95% C.L. for the future COrE mission data.
Address [Diamanti, Roberta] Univ Roma Tre, Dept Phys, I-00146 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000315739200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1349
Permanent link to this record
 

 
Author (down) Archidiacono, M.; Lopez-Honorez, L.; Mena, O.
Title Current constraints on early and stressed dark energy models and future 21 cm perspectives Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 12 Pages 123016 - 10pp
Keywords
Abstract Despite the great progress of current cosmological measurements, the nature of the dominant component of the Universe, coined dark energy, is still an open question. Early dark energy is a possible candidate which may also alleviate some fine-tuning issues of the standard paradigm. Using the latest available cosmological data, we find that the 95% C.L. upper bound on the early dark energy density parameter is Tau(eDE) < 0.009. On the other hand, the dark energy component may be a stressed and inhomogeneous fluid. If this is the case, the effective sound speed and the viscosity parameters are unconstrained by current data. Future omniscopelike 21 cm surveys, combined with present cosmic microwave background data, could be able to distinguish between standard quintessence scenarios from other possible models with 2 sigma significance, assuming a non-negligible early dark energy contribution. The precision achieved on the Omega(eDE) parameter from these 21 cm probes could be below O(10%).
Address [Archidiacono, Maria] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000347194400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2066
Permanent link to this record