Valiente-Dobon, J. J., Poves, A., Gadea, A., & Fernandez-Dominguez, B. (2018). Broken mirror symmetry in S-36 and Ca-36. Phys. Rev. C, 98(1), 011302–5pp.
Abstract: Shape coexistence is a ubiquitous phenomenon in the neutron-rich nuclei belonging to (or sitting at the shores of) the N = 20 island of inversion (IoI). Exact isospin symmetry predicts the same behavior for their mirrors and the existence of a proton-rich IoI around Z = 20, centered in the (surely unbound) nucleus Ca-32. In this article we show that in Ca-36 and S-36, Coulomb effects break dramatically the mirror symmetry in the excitation energies due to the different structures of the intruder and normal states. The mirror energy difference (MED) of their 2(+) states is known to be very large at – 246 keV. We reproduce this value and predict the first excited state in Ca-36 to be a 0(+) at 2.7 MeV, 250 keV below the first 2(+). In its mirror S-36 the 0(+) lies at 55keV above the 2(+) measured at 3.291 MeV. Our calculations predict a huge MED of -720 keV, that we dub the “colossal” mirror energy difference. A possible reaction mechanism to access the O-2(+) in Ca-36 will be discussed. In addition, we theoretically address the MEDs of the A = 34, T = 3 and A = 32, T = 4 mirrors.
|
Valiente-Dobon, J. J. et al, Gadea, A., & Algora, A. (2021). Manifestation of the Berry phase in the atomic nucleus Pb-213. Phys. Lett. B, 816, 136183–5pp.
Abstract: The neutron-rich Pb-213 isotope was produced in the fragmentation of a primary 1 GeV A U-238 beam, separated in FRS in mass and atomic number, and then implanted for isomer decay gamma-ray spectroscopy with the RISING setup at GSI. A newly observed isomer and its measured decay properties indicate that states in Pb-213 are characterized by the seniority quantum number that counts the nucleons not in pairs coupled to angular momentum J = 0. The conservation of seniority is a consequence of a geometric phase associated with particle-hole conjugation, which becomes observable in semi-magic nuclei where nucleons half-fill the valence shell. The gamma-ray spectroscopic observables in Pb-213 are thus found to be driven by two mechanisms, particle-hole conjugation and seniority conservation, which are intertwined through a Berry phase.
|
Valiente-Dobon, J. J. et al, Egea, J., Huyuk, T., Gadea, A., Aliaga, R., Jurado-Gomez, M. L., et al. (2019). NEDA-NEutron Detector Array. Nucl. Instrum. Methods Phys. Res. A, 927, 81–86.
Abstract: The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with gamma-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-gamma discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1 pi was realised at GANIL. This manuscript reviews the various aspects of NEDA.
|
Pilotto, E., Ferrer, F. J., Akhmadaliev, S., Fernandez, A., Gadea, A., Gomez Camacho, J., et al. (2025). Comparing 3He content in magnetron sputtered and implanted targets for nuclear studies. Eur. Phys. J. A, 61(5), 117–8pp.
Abstract: He-3 targets are a valuable tool in nuclear physics, particularly for studying nuclear structure and dynamics via direct reactions in inverse kinematics. However, they are often prone to degradation under intense beam irradiation and have insufficient He-3 content for use with lowintensity exotic beams. In a recent AGATA experiment at LNL, designed to study the astrophysically relevant lifetime of a O-15 excited state, two types of He-3 targets were tested. One was produced using ion implantation and the other with a novel magnetron sputtering technique, in both cases on Au substrates. Following irradiation with a stable O-16 beam, they were characterized using Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA). Results demonstrated that, under the here used fabrication conditions, sputtered targets present a higher He-3 content, while implanted ones exhibit thinner profiles. This highlights the possibilities and complementarity of these targets, suggesting their tailored use for future experimental campaigns.
|
Perez-Vidal, R. M., Galtarossa, F., Mijatovic, T., Szilner, S., Zanon, I., Brugnara, D., et al. (2023). Nuclear structure advancements with multi-nucleon transfer reactions. Eur. Phys. J. A, 59(5), 114–15pp.
Abstract: Multi-Nucleon Transfer (MNT) reactions have been used for decades as a reaction mechanism, in order to populate excited states in nuclei far from stability and to perform nuclear structure studies. Nevertheless, the development of set-ups involving high acceptance tracking magnetic spectrometers (mainly existing in Europe), coupled with the Advanced GAmma Tracking Array (AGATA) opens new possibilities, especially if they are used in conjunction with high-intensity stable beams or ISOL RIBs. In this article, we will discuss the capabilities of such set-ups aiming at different goals, including complete information in high-resolution spectroscopy as well as lifetime measurements.
|
Paxman, C. J. et al, Domingo-Pardo, C., Gadea, A., Perez-Vidal, R. M., & Valiente-Dobon, J. J. (2025). Probing Exotic Cross-Shell Interactions at N=28 with Single-Neutron Transfer on 47K. Phys. Rev. Lett., 134(16), 162504–8pp.
Abstract: We present the first measurement of the 47K(d, p gamma)48K transfer reaction, performed in inverse kinematics using a reaccelerated beam of 47K. The level scheme of 48K has been greatly extended, with nine new bound excited states identified and spectroscopic factors deduced. Uniquely, the 47K(d, p) reaction gives access to nuclear states that are sensitive to the interaction of protons and neutrons in the widely spaced 1s and fp orbitals, respectively. Detailed comparisons with SDPF-U and SDPF-MU shell-model calculations reveal a number of discrepancies between theory and experiment. Intriguingly, a systematic overestimation of spectroscopic factors and a poor reproduction of the energies for 1- states suggests that the mixing between the pi s11/2d43/2 and pi s21/2d33/2 proton configurations in 48K is not correctly described using current interactions, challenging our description of light nuclei around the N = 28 island of inversion.
|
Pajtler, M. V., Szilner, S., Corradi, L., de Angelis, G., Fioretto, E., Gadea, A., et al. (2015). Selective properties of neutron transfer reactions in the Zr-90+Pb-208 system for the population of excited states in zirconium isotopes. Nucl. Phys. A, 941, 273–292.
Abstract: Nuclei produced via multineutron transfer channels have been studied in Zr-90 + Pb-208 close to the Coulomb barrier energy in a fragment-gamma coincident measurement employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. The selective properties of the reaction mechanism have been discussed in terms of states and their strength excited in the neutron transfer channels leading to Zr89-94 isotopes. A strong population of yrast states, with energies up to similar to 7.5 MeV has been observed.
|
Nacher, E., Rubio, B., Algora, A., Cano-Ott, D., Tain, J. L., Gadea, A., et al. (2016). Observations of the Gamow-Teller resonance in the rare-earth nuclei above Gd-146 populated in beta decay. Phys. Rev. C, 93(1), 014308–13pp.
Abstract: The rare-earth region of the nuclear table around the quasi-doubly magic nucleus Gd-146 is one of the very few places in which the Gamow-Teller (GT) resonance can be populated in beta decay. The appropriate technique to study such a phenomenon is total absorption spectroscopy, thanks to which one can measure the B(GT) distribution in beta-decay experiments even when it is very fragmented and lies at high excitation energy in the daughter nucleus. Results on the GT resonance measured in the beta decay of the odd-Z, N = 83 nuclei Tb-148, Ho-150, and Tm-152 are presented in this work and compared with shell-model calculations. The tail of the resonance is clearly observed up to the limit imposed by the Q value. This observation is important in the context of the understanding of the “quenching” of the GT strength.
|
Modamio, V., Valiente-Dobon, J. J., Jaworski, G., Huyuk, T., Triossi, A., Egea, J., et al. (2015). Digital pulse-timing technique for the neutron detector array NEDA. Nucl. Instrum. Methods Phys. Res. A, 775, 71–76.
Abstract: A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.
|
Mijatovic, T., Szilner, S., Corradi, L., Montanari, D., Pollarolo, G., Fioretto, E., et al. (2016). Multinucleon transfer reactions in the Ar-40+Pb-208 system. Phys. Rev. C, 94(6), 064616–7pp.
Abstract: We measured multinucleon transfer reactions in the Ar-40 + Pb-208 system at an energy close to the Coulomb barrier, by employing the PRISMA magnetic spectrometer. We extracted differential and total cross sections of the different transfer channels, with a careful investigation of the total kinetic energy loss distributions. Comparisons between different systems having the same Pb-208 target and with projectiles going from neutron-poor to neutron-rich nuclei, i.e., Ca-40, Ni-58, and Ar-40, as well as between the data and GRAZING calculations have been carried out. The neutron-rich (stable) Ar-40 beam allowed us to get access to the channels involving proton pickup, whose behavior in connection with the production of neutron-rich heavy partner has been outlined.
|