|   | 
Details
   web
Records
Author (down) Forconi, M.; Giare, W.; Mena, O.; Ruchika; Di Valentino, E.; Melchiorri, A.; Nunes, R.C.
Title A double take on early and interacting dark energy from JWST Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 097 - 37pp
Keywords high redshift galaxies; dark energy theory; physics of the early universe
Abstract The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture.
Address [Forconi, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001259284100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6179
Permanent link to this record
 

 
Author (down) Fletcher, E.M.; Ballester, F.; Beaulieu, L.; Morrison, H.; Poher, A.; Rivard, M.J.; Sloboda, R.S.; Vijande, J.; Thomson, R.M.
Title Generation and comparison of 3D dosimetric reference datasets for COMS eye plaque brachytherapy using model-based dose calculations Type Journal Article
Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 51 Issue Pages 694-706
Keywords Monte Carlo; ocular brachytherapy; treatment planning
Abstract PurposeA joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs).Acquisition and Validation MethodsFive test cases are developed: (1) a single model 6711 125I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16-mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within & SIM;2.5% and global agreement was & SIM;2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and & SIM;20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5.Data Format and Usage NotesDose distributions for each set of MC and TPS calculations are available online () along with input files and all other information necessary to repeat the calculations.Potential ApplicationsThese data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.
Address [Fletcher, Elizabeth M.; Thomson, Rowan M.] Carleton Univ, Phys Dept, Carleton Lab Radiotherapy Phys, Ottawa, ON, Canada, Email: rthomson@physics.carleton.ca
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:001058112300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5632
Permanent link to this record
 

 
Author (down) Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A.
Title Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
Year 2024 Publication Computer Methods in Applied Mechanics and Engineering Abbreviated Journal Comput. Meth. Appl. Mech. Eng.
Volume 424 Issue Pages 116906 - 18pp
Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics
Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
Address [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es
Corporate Author Thesis
Publisher Elsevier Science Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7825 ISBN Medium
Area Expedition Conference
Notes WOS:001221797400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6126
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Monin, S.; Torrenti, F.
Title Physical scale adiabatic regularization in cosmological spacetimes Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 4 Pages 045015 - 16pp
Keywords
Abstract We develop a new regularization method for the stress -energy tensor and the two -point function of free quantum scalar fields propagating in cosmological spacetimes. We proceed by extending the adiabatic regularization scheme with the introduction of two additional mass scales. By setting them to the order of the physical scale of the studied scenario, we obtain ultraviolet -regularized quantities that do not distort the power spectra amplitude at the infrared scales amplified by the expansion of the Universe. This is not ensured by the standard adiabatic approach. We also show how our proposed subtraction terms can be interpreted as a renormalization of coupling constants in the Einstein equations. We finally illustrate our proposed regularization method in two scenarios of cosmological interest: de Sitter inflation and geometric reheating.
Address [Ferreiro, Antonio] Univ Utrecht, Freudenthal Inst, NL-3584CC Utrecht, Netherlands, Email: antonio.ferreiro@ru.nl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001180335500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6015
Permanent link to this record
 

 
Author (down) Ferrando Solera, S.; Pich, A.; Vale Silva, L.
Title Direct bounds on Left-Right gauge boson masses at LHC Run 2 Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 027 - 39pp
Keywords Left-Right Models; Grand Unification; New Gauge Interactions
Abstract While the third run of the Large Hadron Collider (LHC) is ongoing, the underlying theory that extends the Standard Model remains so far unknown. Left-Right Models (LRMs) introduce a new gauge sector, and can restore parity symmetry at high enough energies. If LRMs are indeed realized in nature, the mediators of the new weak force can be searched for in colliders via their direct production. We recast existing experimental limits from the LHC Run 2 and derive generic bounds on the masses of the heavy LRM gauge bosons. As a novelty, we discuss the dependence of the WR and ZR total width on the LRM scalar content, obtaining model-independent bounds within the specific realizations of the LRM scalar sectors analysed here. These bounds avoid the need to detail the spectrum of the scalar sector, and apply in the general case where no discrete symmetry is enforced. Moreover, we emphasize the impact on the WR production at LHC of general textures of the right-handed quark mixing matrix without manifest left-right symmetry. We find that the WR and ZR masses are constrained to lie above 2 TeV and 4 TeV, respectively.
Address [Solera, Sergio Ferrando; Pich, Antonio; Silva, Luiz Vale] Univ Valencia, Consejo Super Invest Cient, Dept Fis Teor, Inst Fis Corpuscular, Parc Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Sergio.Ferrando@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001156665600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5928
Permanent link to this record