toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Bridging a gap between continuum-QCD and ab initio predictions of hadron observables Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 742 Issue Pages 183-188  
  Keywords Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies  
  Abstract Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: cdroberts@anl.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350555900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2156  
Permanent link to this record
 

 
Author (up) Blanton, T.D.; Hanlon, A.D.; Ben Horz; Morningstar, C.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Interactions of two and three mesons including higher partial waves from lattice QCD Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 023 - 59pp  
  Keywords Lattice QCD; Scattering Amplitudes  
  Abstract We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s-wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three N-f = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.  
  Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Phys Dept, Seattle, WA 98195 USA, Email: blantonl@uw.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704432600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4991  
Permanent link to this record
 

 
Author (up) Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R. doi  openurl
  Title Implementing the three-particle quantization condition including higher partial waves Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 106 - 56pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory; Scattering Amplitudes  
  Abstract We present an implementation of the relativistic three-particle quantization condition including both s- and d-wave two-particle channels. For this, we develop a systematic expansion of the three-particle K matrix, K-df,K-3, about threshold, which is the generalization of the effective range expansion of the two-particle K matrix, K-2. Relativistic invariance plays an important role in this expansion. We find that d-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle d-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle d-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3 pi(+) system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of K-df,K-3. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.  
  Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Dept Phys, 3910 15th Ave NE, Seattle, WA 98195 USA, Email: blanton1@uw.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462325900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3953  
Permanent link to this record
 

 
Author (up) Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title delta(CP) for leptons and a new take on CP physics with the FSM Type Journal Article
  Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 36 Issue Pages 2150236 - 22pp  
  Keywords Phenomenology beyond the Standard Model; framed Standard Model; leptonic CP violation; CP physics  
  Abstract A bonus of the framed Standard Model (FSM), constructed initially to explain the mass and mixing patterns of quarks and leptons, is a solution (without axions) of the strong CP problem by cancelling the theta-angle term theta(I) Tr(H-mu v H-mu v*) in coloura by a chiral transformation on a quark zero mode which is inherent in FSM, and produces thereby a CP-violating phase in the CKM matrix similar in size to what is observed.' Extending here to flavour, one finds that there are two terms proportional to Tr(G(mu v) G(mu v)*): (a) in the action from flavour instantons with unknown coefficient, say theta(I)', (b) induced by the above FSM solution to the strong CP-problem with therefore known coefficient theta(C)'. Both terms can be cancelled in the FSM by a chiral transformation on the lepton zero mode to give a Jarlskog invariant J' in the PMNS matrix for leptons of order 10(-2), as is hinted by the experiment. But if, as suggested in Ref. 2, the term theta(I)' is to be cancelled by a chiral transformation in the predicted hidden sector to solve the strong CP problem therein, leaving only the term theta(C)' to be cancelled by the chiral transformation on leptons, then the following prediction results: J' similar to -0.012 (delta(CP)'similar to (1.11)pi) which is (i) of the right order, (ii) of the right sign and (iii) in the range favoured by the present experiment. Together with the earlier result for quarks, this offers an attractive unified treatment of all known CP physics.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5058  
Permanent link to this record
 

 
Author (up) Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title Unified FSM treatment of CP physics extended to hidden sector giving (i) delta(CP) for leptons as prediction, (ii) new hints on the material content of the universe Type Journal Article
  Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 36 Issue Pages 2150238 - 19pp  
  Keywords Phenomenology beyond the Standard Model; framed Standard Model; CP physics; dark matter  
  Abstract A unified treatment of CP physics for quarks and leptons in the framed Standard Model (FSM) is extended to include the predicted hidden sector giving as consequences: (i) that an earlier part estimate of the Jarlskog invariant J' for leptons is turned into a prediction for its actual value, i.e. J' similar to -0.012 (delta(CP)' similar to 1.11 pi), which is of the right order of magnitude, of the right sign, and in the range of values favoured by the present experiment, (ii) some novel twists to the effects of CP-violation on the material content of the universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5059  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva