|   | 
Details
   web
Records
Author (up) Pich, A.; Solomonidi, E.; Vale Silva, L.
Title Final-state interactions in the CP asymmetries of charm-meson two-body decays Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 036026 - 25pp
Keywords
Abstract Urgent theoretical progress is needed in order to provide an estimate in the Standard Model of the recent measurement by LHCb of direct CP violation in charm-meson two-body decays. Rescattering effects must be taken into account for a meaningful theoretical description of the amplitudes involved in such category of observables, as signaled by the presence of large strong phases. We discuss the computation of the latter effects based on a two-channel coupled dispersion relation, which exploits isospin-zero phase shifts and inelasticity parametrizations of data coming from the rescattering processes ππ→ππ, πK→πK, and ππ→K¯K. The determination of the subtraction constants of the dispersive integrals relies on the leading contributions to the transition amplitudes from the 1/NC counting, where NC is the number of QCD colors. Furthermore, we use the measured values of the branching ratios to help in selecting the nonperturbative inputs in the isospin limit, from which we predict values for the CP asymmetries. We find that the predicted level of CP violation is much below the experimental value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6091
Permanent link to this record
 

 
Author (up) Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F.
Title Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
Year 2024 Publication Sensors Abbreviated Journal Sensors
Volume 24 Issue 7 Pages 2084 - 12pp
Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering
Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.
Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001201226600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6063
Permanent link to this record
 

 
Author (up) Roca, L.; Song, J.; Oset, E.
Title Molecular pentaquarks with hidden charm and double strangeness Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages 094005 - 8pp
Keywords
Abstract We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
Address [Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: luisroca@um.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224715500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6135
Permanent link to this record
 

 
Author (up) Rossi, R.R.; Sanchez Garcia, G.; Tortola, M.
Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages 095044 - 17pp
Keywords
Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.
Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001238451900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6149
Permanent link to this record
 

 
Author (up) Sanchis-Gual, N.; del Rio, A.
Title Precessing binary black holes as engines of electromagnetic helicity Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 044052 - 11pp
Keywords
Abstract We show that binary black hole mergers with precessing evolution can potentially excite photons from the quantum vacuum in such a way that total helicity is not preserved in the process. Helicity violation is allowed by quantum fluctuations that spoil the electric-magnetic duality symmetry of the classical Maxwell theory without charges. We show here that precessing binary black hole systems in astrophysics generate a flux of circularly polarized gravitational waves which, in turn, provides the required helical background that triggers this quantum effect. Solving the fully nonlinear Einstein’s equations with numerical relativity we explore the parameter space of binary systems and extract the detailed dependence of the quantum effect with the spins of the two black holes. We also introduce a set of diagrammatic techniques that allows us to predict when a binary black hole merger can or cannot emit circularly polarized gravitational radiation, based on mirror-symmetry considerations. This framework allows to understand and to interpret correctly the numerical results, and to predict the outcomes in potentially interesting astrophysical systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6092
Permanent link to this record
 

 
Author (up) Servant, G.; Simakachorn, P.
Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 10 Pages 103538 - 24pp
Keywords
Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.
Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001238459100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6150
Permanent link to this record
 

 
Author (up) Torres-Sanchez, P.; Steiger, H.T.J.; Mastinu, P.; Wyss, J.L.; Kayser, L.; Silvestrin, L.; Musacchio-Gonzalez, E.; Stock, M.R.; Dörflinger, D.; Fahrendholz, U.; Prete, G.; Carletto, O.; Oberauer, L.; Porras, I.
Title Fast neutron production at the LNL Tandem from the 7Li(14N,xn)X reaction Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 4 Pages 372 - 11pp
Keywords
Abstract Fast neutron beams (E-n>1 MeV) are of relevance for many scientific and industrial applications. This paper explores fast neutron production using a TANDEM accelerator at the Legnaro National Laboratories, via an energetic ion beam (90 MeV N-14) onto a lithium target. The high energy models for nuclear collision of FLUKA foresee large neutron yields for reactions of this kind. The experiment aimed at validating the expected neutron yields from FLUKA simulations, using two separate and independent set-ups: one based on the multi-foil activation technique, and the other on the time of flight technique, by using liquid scintillator detectors. The results of the experiment show clear agreement of the measured spectra with the FLUKA simulations, both in the shape and the magnitude of the neutron flux at the mea-sured positions. The neutron spectrum is centered around the 8 MeV range with mild tails, and a maximum neutron energy spanning up to 50 MeV. These advantageous results provide a starting point in the development of fast neutron beams based on high energy ion beams from medium-sized accelerator facilities
Address [Torres-Sanchez, Pablo] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: pablotorres@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001198645600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6107
Permanent link to this record
 

 
Author (up) Wang, D.; Mena, O.
Title Robust analysis of the growth of structure Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 8 Pages 083539 - 18pp
Keywords
Abstract Current cosmological tensions show that it is crucial to test the predictions from the canonical ACDM paradigm at different cosmic times. One very appealing test of structure formation in the Universe is the growth rate of structure in our universe f, usually parametrized via the growth index gamma, with f equivalent to Omega(m)(a)gamma and gamma similar or equal to 0.55 in the standard ACDM case. Recent studies have claimed a suppression of the growth of structure from a variety of cosmological observations, characterized by gamma > 0.55. By employing different self-consistent growth parametrizations schemes, we show here that gamma < 0.55, obtaining instead an enhanced growth of structure today. This preference reaches the 3 sigma significance using cosmic microwave background observations, supernova Ia and baryon acoustic oscillation measurements. The addition of cosmic microwave background lensing data relaxes such a preference to the 2 sigma level, since a larger lensing effect can always be compensated with a smaller structure growth, or, equivalently, with gamma > 0.55. We have also included the lensing amplitude AL as a free parameter in our data analysis, showing that the preference for AL > 1 still remains, except for some particular parametrizations when lensing observations are included. We also do not find any significant preference for an oscillatory dependence of AL, AL + Am sin l. To further reassess the effects of a nonstandard growth, we have computed by means of N-body simulations the dark matter density fields, the dark matter halo mass functions and the halo density profiles for different values of gamma. Future observations from the Square Kilometer Array, reducing by a factor of 3 the current errors on the gamma parameter, further confirm or refute with a strong statistical significance the deviation of the growth index from its standard value.
Address [Wang, Deng; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: dengwang@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224750700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6130
Permanent link to this record
 

 
Author (up) Weber, M. et al; Esperante, D.
Title DONES EVO: Risk mitigation for the IFMIF-DONES facility Type Journal Article
Year 2024 Publication Nuclear Materials and Energy Abbreviated Journal Nucl. Mater. Energy
Volume 38 Issue Pages 101622 - 5pp
Keywords Signal Transmission Improvement; RF Conditioning Optimisation; Beam Extraction Device; Medical Isotopes Production; Lithium Purification; Critical Components Manufacture
Abstract The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.
Address [Weber, M.; Ibarra, A.; Maldonado, R.; Podadera, I.] DONES Espana Consortium, IFMIF, Granada, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001202783400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6075
Permanent link to this record
 

 
Author (up) Winney, D.; Fernandez-Ramirez, C.; Pilloni, A.; Hiller Blin, A.N.; Albaladejo, M.; Bibrzycki, L.; Hammoud, N.; Liao, J.; Mathieu, V.; Montaña, G.; Perry, R.J.; Shastry, V.; Smith, W.A.; Szczepaniak, A.P.
Title Dynamics in near-threshold J/ψ photoproduction Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 054018 - 15pp
Keywords
Abstract The study of J/ψ photoproduction at low energies has consequences for the understanding of multiple aspects of nonperturbative QCD, ranging from mechanical properties of the proton to the binding inside nuclei and the existence of hidden-charm pentaquarks. Factorization of the photon-c¯c and nucleon dynamics or vector meson dominance are often invoked to justify these studies. Alternatively, open-charm intermediate states have been proposed as the dominant mechanism underlying J/ψ photoproduction. As the latter violates this factorization, it is important to estimate the relevance of such contributions. We analyze the latest differential and integrated photoproduction cross sections from the GlueX and J/ψ−007 experiments. We show that the data can be adequately described by a small number of partial waves, which we parametrize with generic models enforcing low-energy unitarity. The results suggest a non-negligible contribution from open-charm intermediate states. Furthermore, most of the models present an elastic scattering length incompatible with previous extractions based on vector meson dominance and thus call into question its applicability to heavy mesons. Our results indicate a wide array of physics possibilities that are compatible with present data and need to be disentangled.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6094
Permanent link to this record