|   | 
Details
   web
Records
Author (up) Esperante-Pereira, D.
Title DEPFET active pixel sensors for the vertex detector of the Belle-II experiment Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages C03004 - 11pp
Keywords Particle tracking detectors; Solid state detectors; Particle tracking detectors (Solid-state detectors)
Abstract Active pixels sensors based on the DEPFET technology will be used for the innermost vertex detector of the future Belle-II experiment. The increased luminosity of the e(+) e(-) SuperKEKB collider entails challenging detector requirements, namely: low material budget, low power consumption, high precision and efficiency, and a large readout rate. The DEPFET active pixel technology has shown to be a suitable solution for this purpose. A review of the different aspects of the detector design (sensors, readout ASICS and supplementary infrastructure) and the results of the latest thinned sensor prototypes (50 μm) are described.
Address Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, Valencia 46980, Spain, Email: daniel.esperante@csic.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000336123200004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1803
Permanent link to this record
 

 
Author (up) Esteve, R.; Toledo, J.; Monrabal, F.; Lorca, D.; Serra, L.; Mari, A.; Gomez-Cadenas, J.J.; Liubarsky, I.; Mora, F.
Title The trigger system in the NEXT-DEMO detector Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C12001 - 9pp
Keywords Data acquisition circuits; Trigger algorithms; Trigger concepts and systems (hardware and software); Modular electronics
Abstract NEXT-DEMO is a prototype of NEXT (Neutrino Experiment with Xenon TPC), an experiment to search for neutrino-less double beta decay using a 100 kg radio-pure, 90 % enriched (136Xe isotope) high-pressure gaseous xenon TPC with electroluminescence readout. The detector is based on a PMT plane for energy measurements and a SiPM tracking plane for topological event filtering. The experiment will be located in the Canfranc Underground Laboratory in Spain. Front-end electronics, trigger and data-acquisition systems (DAQ) have been built. The DAQ is an implementation of the Scalable Readout System (RD51 collaboration) based on FPGA. Our approach for trigger is to have a distributed and reconfigurable system in the DAQ itself. Moreover, the trigger allows on-line triggering based on the detection of primary or secondary scintillation light, or a combination of both, that arrives to the PMT plane.
Address [Esteve, R.; Toledo, J.; Mari, A.; Mora, F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Valencia 46022, Spain, Email: rauesbos@eln.upv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000312962500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1288
Permanent link to this record
 

 
Author (up) Fernandes, L.M.P.; Freitas, E.D.C.; Ball, M.; Gomez-Cadenas, J.J.; Monteiro, C.M.B.; Yahlali, N.; Nygren, D.; dos Santos, J.M.F.
Title Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter Type Journal Article
Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 5 Issue Pages P09006 - 15pp
Keywords Interaction of radiation with matter; Gaseous detectors; Photon detectors for UV, visible and IR photons (vacuum) (photomultipliers, HPDs, others)
Abstract NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires excellent energy resolution, which can be achieved in a Xe TPC with electroluminescence readout. Hamamatsu R8520-06SEL photomultipliers are good candidates for the scintillation readout. The performance of this photomultiplier, used as VUV photosensor in a gas proportional scintillation counter, was investigated. Initial results for the detection of primary and secondary scintillation produced as a result of the interaction of 5.9 keV X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are presented. An energy resolution of 8.0% was obtained for secondary scintillation produced by 5.9 keV X-rays. No significant variation of the primary scintillation was observed for different pressures (1, 2 and 3 bar) and for electric fields up to 0.8 V cm(-1) torr(-1) in the drift region, demonstrating negligible recombination luminescence. A primary scintillation yield of 81 +/- 7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72 +/- 6 eV to produce a primary scintillation photon in xenon.
Address [Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, Instrumentat Ctr, P-3004516 Coimbra, Portugal, Email: pancho@gian.fis.uc.pt
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000283796100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 255
Permanent link to this record
 

 
Author (up) Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D.
Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C05012 - 12pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)
Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000305419700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1084
Permanent link to this record
 

 
Author (up) Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Verdu-Andres, S.
Title Cyclinac medical accelerators using pulsed C6+/H-2(+) ion sources Type Journal Article
Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 5 Issue Pages C09004 - 19pp
Keywords Instrumentation for particle-beam therapy; Instrumentation for hadron therapy; Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)
Abstract Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H-2(+) ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 10(8) fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.
Address [Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Andres, S. Verdu] TERA Fdn, I-28100 Novara, Italy, Email: Adriano.Garonna@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000283796100011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 327
Permanent link to this record