|   | 
Details
   web
Records
Author (up) Della Morte, M.; Hernandez, P.
Title A non-perturbative study of massive gauge theories Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 213 - 20pp
Keywords
Abstract We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1765
Permanent link to this record
 

 
Author (up) Dev, A.; Machado, P.A.N.; Martinez-Mirave, P.
Title Signatures of ultralight dark matter in neutrino oscillation experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 094 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.
Address [Dev, Abhish] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA, Email: adev@umd.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640855200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4794
Permanent link to this record
 

 
Author (up) Dhani, P.K.; Rodrigo, G.; Sborlini, G.F.R.
Title Triple-collinear splittings with massive particles Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 188 - 20pp
Keywords Factorization; Renormalization Group; Higher-Order Perturbative Calculations; Quark Masses; Resummation
Abstract We analyze in detail the most singular behaviour of processes involving triple-collinear splittings with massive particles in the quasi-collinear limit, and present compact expressions for the splitting amplitudes and the corresponding splitting kernels at the squared-amplitude level. Our expressions fully agree with well-known triple-collinear splittings in the massless limit, which are used as a guide to achieve the final expressions. These results are important to quantify dominant mass effects in many observables, and constitute an essential ingredient of current high-precision computational frameworks for collider phenomenology.
Address [Dhani, Prasanna K.; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Paterna, Valencia, Spain, Email: dhani@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001132421500004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5882
Permanent link to this record
 

 
Author (up) Di Bari, P.; King, S.F.; Hossain Rahat, M.
Title Gravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majorons Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 068 - 31pp
Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe
Abstract We explore the origin of Majorana masses within the majoron model and how this can lead to the generation of a distinguishable primordial stochastic background of gravitational waves. We first show how in the simplest majoron model only a contribution from cosmic string can be within the reach of planned experiments. We then consider extensions containing multiple complex scalars, demonstrating how in this case a spectrum comprising contributions from both a strong first order phase transition and cosmic strings can naturally emerge. We show that the interplay between multiple scalar fields can amplify the phase transition signal, potentially leading to double peaks over the wideband sloped spectrum from cosmic strings. We also underscore the possibility of observing such a gravitational wave background to provide insights into the reheating temperature of the universe. We conclude highlighting how the model can be naturally combined with scenarios addressing the origin of matter of the universe, where baryogenesis occurs via leptogenesis and a right-handed neutrino plays the role of dark matter.
Address [Di Bari, Pasquale; King, Stephen F.; Rahat, Moinul Hossain] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: P.Di-Bari@soton.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001256020200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6182
Permanent link to this record
 

 
Author (up) Diaz, M.A.; Rojas, N.; Urrutia-Quiroga, S.; Valle, J.W.F.
Title Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 017 - 23pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.
Address [Aurelio Diaz, Marco; Urrutia-Quiroga, Sebastian] Pontificia Univ Catolica Chile, Inst Fis, Ave Vicuna Mackenna, Santiago 4860, Chile, Email: mad@susy.fis.puc.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000407741000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3247
Permanent link to this record
 

 
Author (up) Domcke, V.; Garcia-Cely, C.; Lee, S.M.; Rodd, N.L.
Title Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 128 - 51pp
Keywords Axions and ALPs; Early Universe Particle Physics
Abstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.
Address [Domcke, Valerie; Lee, Sung Mook; Rodd, Nicholas L.] CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001189228700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6049
Permanent link to this record
 

 
Author (up) Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title The dark side of flipped trinification Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 143 - 31pp
Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry
Abstract We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
Address [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000432044000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3576
Permanent link to this record
 

 
Author (up) Donini, A.; Gomez-Cadenas, J.J.; Meloni, D.
Title The tau-contamination of the golden muon sample at the Neutrino Factory Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 095 - 16pp
Keywords Neutrino Physics; Beyond Standard Model; CP violation
Abstract We study the contribution of nu(e) -> nu(tau) -> tau -> μtransitions to the wrong-sign muon sample of the golden channel of the Neutrino Factory. Muons from tau decays are not really a background, since they contain information from the oscillation signal, and represent a small fraction of the sample. However, if not properly handled they introduce serious systematic error, in particular if the detector/analysis are sensitive to muons of low energy. This systematic effect is particularly troublesome for large theta(13) >= 1 degrees and prevents the use of the Neutrino Factory as a precision facility for large theta(13). Such a systematic error disappears if the tau contribution to the golden muon sample is taken into account. The fact that the fluxes of the Neutrino Factory are exactly calculable permits the knowledge of the tau sample due to the nu(e) -> nu(tau) oscillation. We then compute the contribution to the muon sample arising from this sample in terms of the apparent muon energy. This requires the computation of a migration matrix M-ij which describes the contributions of the tau neutrinos of a given energy E-i, to the muon neutrinos of an apparent energy E-j. We demonstrate that applying M-ij to the data permits the full correction of the otherwise intolerable systematic error.
Address [Donini, A.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain, Email: andrea.donini@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000287939200023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 621
Permanent link to this record
 

 
Author (up) Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.
Title Minimal models with light sterile neutrinos Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 105
Keywords
Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with n(R) gauge singlet fermions (“right-handed neutrinos”), that can account for neutrino masses. We consider the most general coupling of the new fields to the SM fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospheric oscillations corresponds to n(R) = 1. This minimal choice is shown to be excluded by data. The next-to-minimal choice corresponds to n(R) = 2. We perform a systematic study of the full parameter space in the limit of degenerate Majorana masses by requiring that at least two neutrino mass differences correspond to those established by solar and atmospheric oscillations. We identify several types of spectra that can fit long-baseline reactor and accelerator neutrino oscillation data, but fail in explaining solar and/or atmospheric data. The only two solutions that survive are the expected seesaw and quasi-Dirac regions, for which we set lower and upper bounds respectively on the Majorana mass scale. Solar data from neutral current measurements provide essential information to constrain the quasi-Dirac region. The possibility to accommodate the LSND/MiniBoone and reactor anomalies, and the implications for neutrinoless double-beta decay and tritium beta decay are briefly discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000293741500041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 760
Permanent link to this record
 

 
Author (up) Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T.
Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 161 - 20pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.
Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800039 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1161
Permanent link to this record