toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) CLICdp Collaboration (Abramowicz, H. et al.); Boronat, M.; Fullana, E.; Fuster, J.; Garcia, I.; Gomis Lopez, P.; Perello, M.; Ros, E.; Vos, M. url  doi
openurl 
  Title Top-quark physics at the CLIC electron-positron linear collider Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 003 - 88pp  
  Keywords e plus -e- Experiments; Top physics  
  Abstract The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies root s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of ttH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.  
  Address [Abramowicz, H.; Benhammou, Y.; Borysov, O.; Joffe, A.; Levy, A.; Levy, I.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000497709600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4203  
Permanent link to this record
 

 
Author (up) Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A. url  doi
openurl 
  Title Dark matter from a complex scalar singlet: the role of dark CP and other discrete symmetries Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 202 - 34pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.  
  Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000723081600002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5031  
Permanent link to this record
 

 
Author (up) Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A. url  doi
openurl 
  Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 085 - 36pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation  
  Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.  
  Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000836782300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5340  
Permanent link to this record
 

 
Author (up) Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P. url  doi
openurl 
  Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 073 - 27pp  
  Keywords Neutrino Physics; CP violation; Standard Model  
  Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.  
  Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306416500074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1141  
Permanent link to this record
 

 
Author (up) Coloma, P.; Donini, A.; Lopez-Pavon, J.; Minakata, H. url  doi
openurl 
  Title Non-standard interactions at a neutrino factory: correlations and CP violation Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 036 - 41pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We explore the potential of several Neutrino Factory (NF) setups to constrain, discover and measure new physics effects due to Non-Standard Interactions (NSI) in propagation through Earth matter. We first study the impact of NSI in the measurement of theta(13): we find that these could be large due to strong correlations of theta(13) with NSI parameters in the golden channel, and the inclusion of a detector at the magic baseline is crucial in order to reduce them as much as possible. We present, then, the sensitivity of the considered NF setups to the NSI parameters, paying special attention to correlations arising between them and the standard oscillation parameters, when all NSI parameters are introduced at once. Off-diagonal NSI parameters could be tested down to the level of 10(-3), whereas the diagonal combinations (epsilon(ee) – epsilon(tau tau)) and (epsilon(mu mu) – epsilon(tau tau)) can be tested down to 10(-1) and 10(-2), respectively. The possibilities of observing CP violation in this context are also explored, by presenting a first scan of the CP discovery potential of the NF setups to the phases phi(e mu), phi(e tau) and delta. We study separately the case where CP violation comes only from non-standard sources, and the case where it is entangled with the standard source, delta. In case delta turns out to be CP conserving, the interesting possibility of observing CP violation for reasonably small values of the NSI parameters emerges.  
  Address [Coloma, P] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: p.coloma@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294901400046 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 772  
Permanent link to this record
 

 
Author (up) Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Larizgoitia, L.; Monrabal, F.; Palomares-Ruiz, S. url  doi
openurl 
  Title Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 037 - 33pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; New Light Particles  
  Abstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino nonstandard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering.  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 18-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791925200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5222  
Permanent link to this record
 

 
Author (up) Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M. url  doi
openurl 
  Title Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 023 - 30pp  
  Keywords Beyond Standard Model; Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also quantify the dependence of our results for COHERENT with respect to the choice of quenching factor, nuclear form factor, and the treatment of the backgrounds.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, E-46980 Valencia, Spain, Email: pcoloma@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519223000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4330  
Permanent link to this record
 

 
Author (up) Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M. url  doi
openurl 
  Title Addendum to: Improved global fit to non-standard neutrino interactions using COHERENT energy and timing data Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 071 - 6pp  
  Keywords  
  Abstract In this addendum we re-assess the constraints on Non-Standard Interactions (NSI) from the combined analysis of data from oscillation experiments and from COHERENT after including the new data released since the publication of ref. [1].  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Calle Catedrat Jose Beltran, E-46980 Valencia, Spain, Email: pcoloma@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000600015400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4656  
Permanent link to this record
 

 
Author (up) Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Menendez, J. url  doi
openurl 
  Title Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 030 - 22pp  
  Keywords Neutrino Physics; Effective Field Theories  
  Abstract Coherent Elastic neutrino-Nucleus Scattering (CE nu NS), a process recently measured for the first time at ORNL's Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CE nu NS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at the COHERENT experiment.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, E-46980 Valencia, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561296500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4502  
Permanent link to this record
 

 
Author (up) Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S. url  doi
openurl 
  Title Constraining new physics with Borexino Phase-II spectral data Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 138 - 35pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties  
  Abstract We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.  
  Address [Coloma, Pilar; Maltoni, Michele] CSIC UAM, Inst Fis Teor IFT CFTMAT, Calle Nicolas Cabrera 1315,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000829963100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5307  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva