toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title Magnetic field driven enhancement of the weak decay width of charged pions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 058 - 19pp  
  Keywords QCD Phenomenology  
  Abstract We study the effect of a uniform magnetic field B on the decays pi- > l- nu_l bar, where l(-)=e(-), μ(-), carrying out a general analysis that includes four pi (-) decay constants. Taking the values of these constants from a chiral effective Nambu-Jona-Lasinio (NJL) model, it is seen that the total decay rate gets strongly increased with respect to the B = 0 case, with an enhancement factor ranging from similar to 10 for eB = 0.1 GeV2 up to similar to 10(3) for eB = 1 GeV2. The ratio between electronic and muonic decays gets also enhanced, reaching a value of about 1 : 2 for eB = 1 GeV2. In addition, we find that for large B the angular distribution of outgoing antineutrinos shows a significant suppression in the direction of the magnetic field.  
  Address [Coppola, Maximo; Scoccola, Norberto N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina, Email: coppola@tandar.cnea.gov.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570908100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4534  
Permanent link to this record
 

 
Author (down) Cirigliano, V.; Diaz-Calderon, D.; Falkowski, A.; Gonzalez-Alonso, M.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Semileptonic tau decays beyond the Standard Model Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 152 - 61pp  
  Keywords Semi-Leptonic Decays; Specific BSM Phenomenology  
  Abstract Hadronic tau decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive tau observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.  
  Address [Cirigliano, Vincenzo] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA, Email: cirigv@uw.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000788323700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5216  
Permanent link to this record
 

 
Author (down) Chala, M.; Delgado, A.; Nardini, G.; Quiros, M. url  doi
openurl 
  Title A light sneutrino rescues the light stop Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 097 - 22pp  
  Keywords Supersymmetry Phenomenology  
  Abstract Stop searches in supersymmetric frameworks with R-parity conservation usually assume the lightest neutralino to be the lightest supersymmetric particle. In this paper we consider an alternative scenario in which the left-handed tau sneutrino is lighter than neutralinos and stable at collider scales, but possibly unstable at cosmological scales. Moreover the (mostly right-handed) stop (t) over tilde is lighter than all electroweakinos, and heavier than the scalars of the third generation lepton doublet, whose charged component, (T) over tilde, is heavier than the neutral one, (v) over tilde. The remaining supersymmetric particles are decoupled from the stop phenomenology. In most of the parameter space, the relevant stop decays are only into t (T) over tildeT, t (v) over tildev and b (v) over tildeT via off-shell electroweakinos. We constrain the branching ratios of these decays by recasting the most sensitive stop searches. Due to the “double invisible” kinematics of the (t) over tilde -> t (v) over tildev process, and the low efficiency in tagging the t (T) over tildeT decay products, light stops are generically allowed. In the minimal supersymmetric standard model with similar to 100 GeV sneutrinos, stops with masses as small as similar to 350 GeV turn out to be allowed at 95% CL.  
  Address [Chala, M.] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: mikael.chala@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402858600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3165  
Permanent link to this record
 

 
Author (down) Chachamis, G.; Deak, M.; Hentschinski, M.; Rodrigo, G.; Sabio Vera, A. url  doi
openurl 
  Title Single bottom quark production in kT-factorisation Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 123 - 17pp  
  Keywords QCD Phenomenology; NLO Computations  
  Abstract We present a study within the k(T)-factorisation scheme on single bottom quark production at the LHC. In particular, we calculate the rapidity and transverse momentum differential distributions for single bottom quark/anti-quark production. In our setup, the unintegrated gluon density is obtained from the NLx BFKL Green function whereas we included mass effects to the Lx heavy quark jet vertex. We compare our results to the corresponding distributions predicted by the usual collinear factorisation scheme. The latter were produced with Pythia 8.1.  
  Address [Chachamis, Grigorios; Sabio Vera, Agustin] Univ Autonoma Madrid, E-28049 Madrid, Spain, Email: grigorios.chachamis@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361753300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2614  
Permanent link to this record
 

 
Author (down) Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 47pp  
  Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
 

 
Author (down) Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y. url  doi
openurl 
  Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 004 - 37pp  
  Keywords Specific BSM Phenomenology; Supersymmetry  
  Abstract Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.  
  Address [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000943095100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5494  
Permanent link to this record
 

 
Author (down) Campanario, F.; Kubocz, M. url  doi
openurl 
  Title Higgs boson CP-properties of the gluonic contributions in Higgs plus three jet production via gluon fusion at the LHC Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 173 - 16pp  
  Keywords QCD Phenomenology; Monte Carlo Simulations  
  Abstract in high energy hadronic collisions, a general CP-violating Higgs boson Phi with accompanying jets can be efficiently produced via gluon fusion, which is mediated by heavy quark loops. In this article, we study the dominant sub-channel gg -> ggg Phi of the gluon fusion production process with triple real emission corrections at order alpha(5)(s). We go beyond the heavy top-quark approximation and include the full mass dependence of the top- and bottom-quark contributions. Furthermore, in a specific model we demonstrate the features of our program and show the impact of bottom-quark loop contributions in combination with large values of tan beta on differential distributions sensitive to CP-rneasurements of the Higgs boson.  
  Address [Campanario, Francisco] Univ Valencia CSIC, IFIC, Div Theory, E-46100 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344652800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2007  
Permanent link to this record
 

 
Author (down) Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R. url  doi
openurl 
  Title The health of SUSY after the Higgs discovery and the XENON100 data Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 182 - 47pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at similar to 2 sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high.  
  Address [Cabrera, Maria Eugenia] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1012 WX Amsterdam, Netherlands, Email: M.E.CabreraCatalan@uva.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000323202900095 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1572  
Permanent link to this record
 

 
Author (down) Cabrera, M.E.; Casas, J.A.; Delgado, A.; Robles, S.; Ruiz de Austri, R. url  doi
openurl 
  Title Naturalness of MSSM dark matter Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 058 - 30pp  
  Keywords Supersymmetry Phenomenology  
  Abstract There exists a vast literature examining the electroweak (EW) fine-tuning problem in supersymmetric scenarios, but little concerned with the dark matter (DM) one, which should be combined with the former. In this paper, we study this problem in an, as much as possible, exhaustive and rigorous way. We have considered the MSSM framework, assuming that the LSP is the lightest neutralino, chi(0)(1), and exploring the various possibilities for the mass and composition of chi(0)(1), as well as different mechanisms for annihilation of the DM particles in the early Universe (well-tempered neutralinos, funnels and co-annihilation scenarios). We also present a discussion about the statistical meaning of the fine-tuning and how it should be computed for the DM abundance, and combined with the EW fine-tuning. The results are very robust and model-independent and favour some scenarios (like the h-funnel when M-chi 10 is not too close to m(h)/2) with respect to others (such as the pure wino case). These features should be taken into account when one explores “natural SUSY” scenarios and their possible signatures at the LHC and in DM detection experiments.  
  Address [Cabrera, Maria Eugenia] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil, Email: mcabrera@if.usp.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382166600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2797  
Permanent link to this record
 

 
Author (down) Cabrera, M.E.; Casas, A.; Ruiz de Austri, R.; Bertone, G. url  doi
openurl 
  Title LHC and dark matter phenomenology of the NUGHM Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 114 - 39pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We present a Bayesian analysis of the NUGHM, a supersymmetric scenario with non-universal gaugino masses and Higgs masses, including all the relevant experimental observables and dark matter constraints. The main merit of the NUGHM is that it essentially includes all the possibilities for dark matter (DM) candidates within the MSSM, since the neutralino and chargino spectrum -and composition- are as free as they can be in the general MSSM. We identify the most probable regions in the NUHGM parameter space, and study the associated phenomenology at the LHC and the prospects for DM direct detection. Requiring that the neutralino makes all of the DM in the Universe, we identify two preferred regions around m(chi 10) = 1 TeV, 3 TeV, which correspond to the (almost) pure Higgsino and wino case. There exist other marginal regions (e.g. Higgs-funnel), but with much less statistical weight. The prospects for detection at the LHC in this case are quite pessimistic, but future direct detection experiments like LUX and XENON1T, will be able to probe this scenario. In contrast, when allowing other DM components, the prospects for detection at the LHC become more encouraging – the most promising signals being, beside the production of gluinos and squarks, the production of the heavier chargino and neutralino states, which lead to WZ and same-sign WW final states – and direct detection remains a complementary, and even more powerful, way to probe the scenario.  
  Address [Cabrera, Maria Eugenia; Bertone, Gianfranco] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1018 XE Amsterdam, Netherlands, Email: mcabrera@if.usp.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346771200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2063  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva