toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D. url  doi
openurl 
  Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 030 - 41pp  
  Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.  
  Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044930400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5607  
Permanent link to this record
 

 
Author (up) Blennow, M.; Fernandez-Martinez, E.; Mena, O.; Redondo, J.; Serra, E.P. url  doi
openurl 
  Title Asymmetric Dark Matter and Dark Radiation Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 022 - 23pp  
  Keywords dark matter theory; particle physics – cosmology connection; physics of the early universe  
  Abstract Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.  
  Address [Blennow, Mattias] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: Mattias.Blennow@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307079600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1165  
Permanent link to this record
 

 
Author (up) Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P. url  doi
openurl 
  Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 073 - 27pp  
  Keywords Neutrino Physics; CP violation; Standard Model  
  Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.  
  Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306416500074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1141  
Permanent link to this record
 

 
Author (up) Coloma, P.; Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Pavlovic, Z. url  doi
openurl 
  Title GeV-scale neutrinos: interactions with mesons and DUNE sensitivity Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 1 Pages 78 - 24pp  
  Keywords  
  Abstract The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced in meson decays. Similarly, provided they are sufficiently heavy, their decay channels may involve mesons in the final state. Although the couplings between mesons and heavy neutrinos have been computed previously, significant discrepancies can be found in the literature. The aim of this paper is to clarify such discrepancies and provide consistent expressions for all relevant effective operators involving mesons with masses up to 2 GeV. Moreover, the effective Lagrangians obtained for both the Dirac and Majorana scenarios are made publicly available as FeynRules models so that fully differential event distributions can be easily simulated. As an application of our setup, we numerically compute the expected sensitivity of the DUNE near detector to these heavy neutral leptons.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000613016200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4704  
Permanent link to this record
 

 
Author (up) De Romeri, V.; Fernandez-Martinez, E.; Gehrlein, J.; Machado, P.A.N.; Niro, V. url  doi
openurl 
  Title Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 169 - 21pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate B-L symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged U(1) B-L symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the U(1) B-L. We investigate the phenomenology associated to these new states and find that one of them is a viable dark matter candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the Z' boson associated to the gauged U(1) B-L symmetry. Given the large charges required for anomaly cancellation in the dark sector, the B-L Z' interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on Z'-mediated dark matter relic abundance. The collider phenomenology of this elusive Z' is also discussed.  
  Address [De Romeri, Valentina] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414811300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3357  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva