|   | 
Details
   web
Records
Author (up) ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data Type Journal Article
Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 853 Issue 1 Pages L7 - 5pp
Keywords astroparticle physics; neutrinos
Abstract The ANTARES detector is at present the most sensitive neutrino telescope in the northern hemisphere. The highly significant cosmic neutrino excess observed by the Antarctic IceCube detector can be studied with ANTARES, exploiting its complementing field of view, exposure, and lower energy threshold. Searches for an all-flavor diffuse neutrino signal, covering nine years of ANTARES data taking, are presented in this Letter. Upward-going events are used to reduce the atmospheric muon background. This work includes for the first time in ANTARES both track-like (mainly nu mu) and shower-like (mainly nu(e)) events in this kind of analysis. Track-like events allow for an increase of the effective volume of the detector thanks to the long path traveled by muons in rock and/ or sea water. Shower-like events are well reconstructed only when the neutrino interaction vertex is close to, or inside, the instrumented volume. A mild excess of high-energy events over the expected background is observed in nine years of ANTARES data in both samples. The best fit for a single power-law cosmic neutrino spectrum, in terms of perflavor flux at 100 TeV, is Phi(1f)(0) (100 TeV) = (1.7 +/- 1.0) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) with spectral index Gamma = 2.4(-0.4)(+0.5) .The null cosmic flux assumption is rejected with a significance of 1.6 sigma .
Address [Albert, A.; Drouhin, D.; Racca, C.] Inst Univ Technol Colmar, Univ Haute Alsace, GRPHE, 34 Rue Grillenbreit BP, F-505686800 Colmar, France, Email: lfusco@bo.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000423182700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3456
Permanent link to this record
 

 
Author (up) ANTARES, IceCube, Pierre Auger, LIGO Sci and VIRGO Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Type Journal Article
Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 850 Issue 2 Pages L35 - 18pp
Keywords gamma-ray burst: general; gravitational waves; neutrinos
Abstract The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-505686800 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000417541800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3421
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron Type Journal Article
Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 896 Issue 2 Pages L29 - 9pp
Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Cosmic ray sources; Supernova remnants; Gamma-ray observatories
Abstract We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.
Address [Albert, A.; Dingus, B. L.; Harding, J. P.; Malone, K.; Sinnis, G.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hfleisch@mtu.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000542724600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4445
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC and Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341 Type Journal Article
Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 903 Issue 1 Pages L14 - 6pp
Keywords Gamma-rays; Interstellar medium
Abstract The discovery of the TeV point source 2HWC J2006+341 was reported in the second HAWC gamma-ray catalog. We present a follow-up study of this source here. The TeV emission is best described by an extended source with a soft spectrum. At GeV energies, an extended source is significantly detected in Fermi-LAT data. The matching locations, sizes, and spectra suggest that both gamma-ray detections correspond to the same source. Different scenarios for the origin of the emission are considered and we rule out an association to the pulsar PSR J2004+3429 due to extreme energetics required, if located at a distance of 10.8 kpc.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: miguel.araya@ucr.ac.cr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000584890800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4591
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Evidence of 200 TeV Photons from HAWC J1825-134 Type Journal Article
Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 907 Issue 2 Pages L30 - 9pp
Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Gamma-ray observatories
Abstract The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10(15) eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV gamma-rays from decaying pi(0), produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the gamma-ray source, HAWC J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons cm(-3). While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: sabrina.casanova@ifj.edu.pl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000612623100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4703
Permanent link to this record