|   | 
Details
   web
Records
Author (down) Schwetz, T.; Tortola, M.; Valle, J.W.F.
Title Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters Type Journal Article
Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 13 Issue Pages 063004 - 15pp
Keywords
Abstract We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include the latest results from the MINOS long-baseline experiment (including electron neutrino appearance and anti-neutrino data), updating all relevant solar (Super-Kamiokande (SK) II + III), atmospheric (SK I + II + III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle theta(13). In our recommended default analysis, we find from the global fit that the hint for nonzero theta(13) remains weak, at 1.8 sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions regarding the reactor neutrino analysis.
Address [Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000292137500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 666
Permanent link to this record
 

 
Author (down) Schwetz, T.; Tortola, M.; Valle, J.W.F.
Title Where we are on theta(13): addendum to 'Global neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters' Type Journal Article
Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 13 Issue Pages 109401 - 5pp
Keywords
Abstract In this addendum to Schwetz et al (2011 New J. Phys. 13 063004), we consider the recent results from long-baseline nu(mu) -> nu(e) searches at the Tokai to Kamioka (T2K) and Main Injector Neutrino Oscillation Search (MINOS) experiments and investigate their implications for the mixing angle theta(13) and the leptonic Dirac CP phase delta. By combining the 2.5 sigma indication for a nonzero value of theta(13) coming from the T2K data with global neutrino oscillation data, we obtain a significance for theta(13) > 0 of about 3 sigma with best fit points sin(2) theta(13) = 0.013 (0.016) for normal (inverted) neutrino mass ordering. These results depend somewhat on assumptions concerning the analysis of reactor neutrino data.
Address [Schwetz, T] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000296664700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 801
Permanent link to this record
 

 
Author (down) Rossi, R.R.; Sanchez Garcia, G.; Tortola, M.
Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages 095044 - 17pp
Keywords
Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.
Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001238451900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6149
Permanent link to this record
 

 
Author (down) Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title New Ambiguity in Probing CP Violation in Neutrino Oscillations Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 117 Issue 6 Pages 061804 - 5pp
Keywords
Abstract If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase phi associated with nonunitarity. This leads to an ambiguity in extracting the “standard” three-neutrino phase delta(CP), which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta(CP).
Address [Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000381442800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2812
Permanent link to this record
 

 
Author (down) Miranda, O.G.; Pasquini, P.; Tortola, M.; Valle, J.W.F.
Title Exploring the potential of short-baseline physics at Fermilab Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages 095026 - 9pp
Keywords
Abstract We study the capabilities of the short-baseline neutrino program at Fermilab to probe the unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup will substantially improve the current sensitivity on nonunitarity. This would help to remove CP degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study the sensitivity of our proposed setup to light sterile neutrinos for various configurations.
Address [Miranda, O. G.] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433033000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3592
Permanent link to this record