|   | 
Details
   web
Records
Author (up) de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title 2020 global reassessment of the neutrino oscillation picture Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 071 - 36pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NO nu A measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of theta (13), theta (12), Delta m212 and Delta m312. The best fit value for the atmospheric angle theta (23) lies in the second octant, but first octant solutions remain allowed at similar to 2.4 sigma. Regarding CP violation measurements, the preferred value of delta we obtain is 1.08 pi (1.58 pi) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5 sigma statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00 sigma. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68 sigma within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70 sigma. This very same cosmological data set provides 2 sigma upper limits on the total neutrino mass corresponding to Sigma m(nu)< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs.
Address [de Salas, P. F.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000618343000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4727
Permanent link to this record
 

 
Author (up) de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M.
Title Cosmological radiation density with non-standard neutrino-electron interactions Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 820 Issue Pages 136508 - 9pp
Keywords Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations
Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.
Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000713101800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5023
Permanent link to this record
 

 
Author (up) Dev, A.; Machado, P.A.N.; Martinez-Mirave, P.
Title Signatures of ultralight dark matter in neutrino oscillation experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 094 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.
Address [Dev, Abhish] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA, Email: adev@umd.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640855200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4794
Permanent link to this record
 

 
Author (up) DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 7 Pages 618 - 25pp
Keywords
Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: leigh.howard.whitehead@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001061746600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5721
Permanent link to this record
 

 
Author (up) DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 4 Pages P04034 - 35pp
Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000986658100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5551
Permanent link to this record