|   | 
Details
   web
Records
Author (down) Gonzalez, M.; Hirsch, M.; Kovalenko, S.G.
Title Neutrinoless double beta decay and QCD running at low energy scales Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 11 Pages 115005 - 6pp
Keywords
Abstract There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 nu beta beta) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 nu beta beta-decay and their importance for a reliable treatment of 0 nu beta beta-decay has been demonstrated. However, these perturbative results are valid at energy scales above similar to 1 GeV, while the typical 0 nu beta beta scale is about similar to 100 MeV. In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant “freezing” behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 nu beta beta-decay in general only moderately. We also discuss that the tensor circle times tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.
Address [Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso 2390123, Chile, Email: marcela.gonzalezp@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000434211200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3603
Permanent link to this record
 

 
Author (down) Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G.
Title Scalar-mediated double beta decay and LHC Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 130 - 15pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract The decay rate of neutrinoless double beta (0 nu beta beta) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0 nu beta beta-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0 nu beta beta decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0 nu beta beta-decay.
Address [Gonzalez, L.; Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: lorena.gonzalez@alumnos.usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000399774600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3060
Permanent link to this record
 

 
Author (down) Dib, C.; Helo, J.C.; Hirsch, M.; Kovalenko, S.; Schmidt, I.
Title Heavy sterile neutrinos in tau decays and the MiniBooNE anomaly Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 1 Pages 011301 - 4pp
Keywords
Abstract Current results of the MiniBooNE experiment show excess events that indicate neutrino oscillations, but only if one goes beyond the standard 3 family scenario. Recently a different explanation of the events has been given, not in terms of oscillations but by the production and decay of a massive sterile neutrino with large transition magnetic moment. We study the effect of such a sterile neutrino in the rare decays tau(-) -> mu(-)mu(+)pi(-)nu and tau(-) -> mu(-)mu(+)e(-)nu nu. We find that searches for these decays, featuring displaced vertices between the mu(-) and the other charged particles, constitute reliable tests for the existence of the sterile neutrino proposed to explain the MiniBooNE anomaly. These searches could be done with already existing experimental data.
Address [Dib, Claudio; Carlos Helo, Juan; Kovalenko, Sergey; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298925800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 869
Permanent link to this record
 

 
Author (down) Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Predictive Pati-Salam theory of fermion masses and mixing Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 118 - 25pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000406883100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3237
Permanent link to this record
 

 
Author (down) Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 065 - 24pp
Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters
Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459168900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3917
Permanent link to this record