toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Centelles Chulia, S.; Cepedello, R.; Medina, O. url  doi
openurl 
  Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 080 - 23pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter  
  Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.  
  Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867661300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5387  
Permanent link to this record
 

 
Author (down) Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F. url  doi
openurl 
  Title Linear seesaw mechanism from dark sector Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 046 - 18pp  
  Keywords Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.  
  Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184730300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5982  
Permanent link to this record
 

 
Author (down) Botella, F.J.; Branco, G.C.; Rebelo, M.N. url  doi
openurl 
  Title Minimal flavour violation and multi-Higgs models Type Journal Article
  Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 687 Issue 2-3 Pages 194-200  
  Keywords Multi-Higgs models; Minimal Flavour Violation; FCNC; Flavour symmetries  
  Abstract We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs models without the assumption of Natural Flavour Conservation (NFC) in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of V-CKM and propose a MFV expansion for the neutral Higgs couplings to fermions.  
  Address [Branco, G. C.; Rebelo, M. N.] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: fbotella@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277070800019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 457  
Permanent link to this record
 

 
Author (down) Bonilla, C.; Lamprea, J.M.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Flavour-symmetric type-II Dirac neutrino seesaw mechanism Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 779 Issue Pages 257-261  
  Keywords Neutrino masses and mixing; Flavour physics  
  Abstract We propose a Standard Model extension with underlying A(4) flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the “golden” flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit[ 1] we derive restrictions on the oscillation parameters, such as a correlation between delta(CP) and m(nu lightest).  
  Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429098900032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3566  
Permanent link to this record
 

 
Author (down) Bonilla, C.; Herms, J.; Medina, O.; Peinado, E. url  doi
openurl 
  Title Discrete dark matter mechanism as the source of neutrino mass scales Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 078 - 23pp  
  Keywords Flavour Symmetries; Models for Dark Matter; Neutrino Mixing  
  Abstract The hierarchy in scale between atmospheric and solar neutrino mass splittings is investigated through two distinct neutrino mass mechanisms from tree-level and one-loop-level contributions. We demonstrate that the minimal discrete dark matter mechanism contains the ingredients for explaining this hierarchy. This scenario is characterized by adding new RH neutrinos and SU(2)-doublet scalars to the Standard Model as triplet representations of an A(4) flavor symmetry. The A(4) symmetry breaking, which occurs at the electroweak scale, leads to a residual DOUBLE-STRUCK CAPITAL Z(2) symmetry responsible for the dark matter stability and dictates the neutrino phenomenology. Finally, we show that to reproduce the neutrino mixing angles correctly, it is necessary to violate CP in the scalar potential.  
  Address [Bonilla, Cesar] Univ Catolica Norte, Dept Fis, Ave Angamos 0610,Casilla 1280, Antofagasta, Chile, Email: cesar.bonilla@ucn.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001007947500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5561  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva