|   | 
Details
   web
Records
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 026 - 20pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000315576400026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1360
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 009 - 19pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina, Email: auger_spokepersons@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000320161400011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1497
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Identifying clouds over the Pierre Auger Observatory using infrared satellite data Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 50-52 Issue Pages 92-101
Keywords Ultra-high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Atmospheric monitoring; Clouds; Satellites
Abstract We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000329271000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1690
Permanent link to this record
 

 
Author (up) Trotta, R.; Johannesson, G.; Moskalenko, I.V.; Porter, T.A.; Ruiz de Austri, R.; Strong, A.W.
Title Constraints on Cosmic-Ray Propagation Models from a Global Bayesian Analysis Type Journal Article
Year 2011 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 729 Issue 2 Pages 106 - 16pp
Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical
Abstract Research in many areas of modern physics such as, e. g., indirect searches for dark matter and particle acceleration in supernova remnant shocks rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma-rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions. The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, which uses astrophysical information, and nuclear and particle data as inputs to self-consistently predict CRs, gamma-rays, synchrotron, and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.
Address [Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes ISI:000288608700029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 541
Permanent link to this record