toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Kowalska, M.; Naimi, S.; Agramunt, J.; Algora, A.; Beck, D.; Blank, B.; Blaum, K.; Bohm, C.; Borgmann, C.; Breitenfeldt, M.; Fraile, L.M.; George, S.; Herfurth, F.; Herlert, A.; Kreim, S.; Lunney, D.; Minaya-Ramirez, E.; Neidherr, D.; Rosenbusch, M.; Rubio, B.; Schweikhard, L.; Stanja, J.; Zuber, K. doi  openurl
  Title Trap-assisted decay spectroscopy with ISOLTRAP Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 689 Issue Pages 102-107  
  Keywords Penning trap mass spectrometers; Trap-assisted decay spectroscopy; Studies at ISOL-type facilities  
  Abstract Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements.  
  Address [Kowalska, M.; Herlert, A.] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland, Email: kowalska@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307797500016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1134  
Permanent link to this record
 

 
Author (down) Korichi, A.; Lauritsen, T.; Wilson, A.N.; Dudouet, J.; Clement, E.; Lalovic, N.; Perez-Vidal, R.M.; Pietri, S.; Ralet, D.; Stezowski, O. doi  openurl
  Title Performance of a gamma-ray tracking array: Characterizing the AGATA array using a Co-60 source Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 872 Issue Pages 80-86  
  Keywords Segmented germanium detectors; Efficiency measurements; gamma-ray tracking; AGATA; gamma-ray spectroscopy; Nuclear structure  
  Abstract The AGATA (Advanced GAmma Tracking Array) tracking detector is being designed to far surpass the performance of the previous generation, Compton-suppressed arrays. In this paper, a characterization of AGATA is provided based on data from the second GSI campaign. Emphasis is placed on the proper corrections required to extract the absolute photopeak efficiency and peak-to-total ratio. The performance after tracking is extracted and GEANT4 simulations are used both to understand the results and to scale the measurements up to predicted values for the full 4 pi implementation of the device.  
  Address [Korichi, A.] CNRS, IN2P3, CSNSM, Bat 104-108,Orsay Campus, F-91405 Orsay, France, Email: Amel.Korichi@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411755300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3311  
Permanent link to this record
 

 
Author (down) Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Characterization of a cylindrical plastic beta-detector with Monte Carlo simulations of optical photons Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 854 Issue Pages 134-138  
  Keywords Plastic scintillators; Monte Carlo simulations; Total absorption spectroscopy; Optical photons  
  Abstract In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic beta-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption gamma-ray spectroscopy analysis.  
  Address [Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: victor.guadilla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398869100018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3052  
Permanent link to this record
 

 
Author (down) Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F. url  doi
openurl 
  Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P09011 - 18pp  
  Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.  
  Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387862300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2866  
Permanent link to this record
 

 
Author (down) Gomez, M.E.; Lola, S.; Ruiz de Austri, R.; Shafi, Q. url  doi
openurl 
  Title Confronting SUSY GUT With Dark Matter, Sparticle Spectroscopy and Muon (g – 2) Type Journal Article
  Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 6 Issue Pages 127 - 9pp  
  Keywords grand unification; supersymmetry; dark matter; LHC; sparticle spectroscopy  
  Abstract We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, SO(10) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We identify characteristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to SO(10), giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.  
  Address [Gomez, Mario E.] Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Huelva, Spain, Email: mario.gomez@dfa.uhu.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450940000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva