toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Sborlini, G.F.R.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title Triple collinear splitting functions at NLO for scattering processes with photons Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 161 - 29pp  
  Keywords NLO Computations  
  Abstract We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results.  
  Address [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347905900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2082  
Permanent link to this record
 

 
Author (up) Sborlini, G.F.R.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title Polarized triple-collinear splitting functions at NLO for processes with photons Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 021 - 30pp  
  Keywords NLO Computations  
  Abstract We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling alpha(S), for the splitting processes gamma -> qq gamma, gamma -> qqg and g -> qq gamma. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).  
  Address [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000351363800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2169  
Permanent link to this record
 

 
Author (up) Tain, J.L. et al; Algora, A.; Estevez, E.; Rubio, B.; Valencia, E.; Jordan, D. doi  openurl
  Title Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1499-1502  
  Keywords Beta decay; Delayed neutron emission; Total absorption gamma-ray spectroscopy; Neutron detectors; Nuclear technology; Nuclear astrophysics  
  Abstract A complete characterisation of the beta-decay of neutron-rich nuclei can be obtained from the measurement of beta-delayed gamma rays and, whenever the process is energetically possible, beta-delayed neutrons. The accurate determination of the beta-intensity distribution and the beta-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.  
  Address [Tain, JL; Algora, A; Estevez, E; Rubio, B; Valencia, E; Jordan, D] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 730  
Permanent link to this record
 

 
Author (up) Vatsyayan, D.; Goswami, S. url  doi
openurl 
  Title Lowering the scale of fermion triplet leptogenesis with two Higgs doublets Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 3 Pages 035014 - 9pp  
  Keywords  
  Abstract In this paper, we consider the possibility of generating the observed baryon asymmetry of the Universe via leptogenesis in the context of a triplet fermion-mediated type-III seesaw model of neutrino mass. With a hierarchical spectrum of the additional fermions, the lower bound on the lightest triplet mass is similar to 1010 GeV for successful leptogenesis, a couple of orders higher than that of the type-I case. We investigate the possibility of lowering this bound in the framework of two-Higgs-doublet models. We find that the bounds can be lowered down to 107 GeV for a hierarchical spectrum. If we include the flavor effects, then a further lowering by one order of magnitude is possible. We also discuss if such lowering can be compatible with the naturalness bounds on the triplet mass.  
  Address [Vatsyayan, Drona] Univ Valencia, Dept Fis Teor, C-Catedrat Jose Beltran, 2, E-46980 Paterna, Spain, Email: drona.vatsyayan@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000982166600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5544  
Permanent link to this record
 

 
Author (up) Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Angles-Alcazar, D.; Genel, S.; Marinacci, F.; Spergel, D.N.; Hernquist, L.; Vogelsberger, M.; Dave, R.; Narayanan, D. url  doi
openurl 
  Title Inferring Halo Masses with Graph Neural Networks Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 935 Issue 1 Pages 30 - 15pp  
  Keywords  
  Abstract Understanding the halo-galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a similar to 0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub (https://github.com/PabloVD/HaloGraphNet).  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000838320900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5325  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva