toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) n_TOF Collaboration (Dietz, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Measurement of the Ge-72(n, y) cross section over a wide neutron energy range at the CERN n_TOF facility Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 4 Pages 045809 - 8pp  
  Keywords  
  Abstract The Ge-72(n, gamma) cross section was measured for neutron energies up to 300 keV at the neutron time-of-flight facility n_TOF (CERN), Geneva, for the first time covering energies relevant to heavy-element synthesis in stars. The measurement was performed at the high-resolution beamline EAR-1, using an isotopically enriched (GeO2)-Ge-72 sample. The prompt capture gamma rays were detected with four liquid scintillation detectors, optimized for low neutron sensitivity. We determined resonance capture kernels up to a neutron energy of 43 keV, and averaged cross sections from 43 to 300 keV. Maxwellian-averaged cross section values were calculated from kT = 5 to 100 keV, with uncertainties between 3.2% and 7.1%. The new results significantly reduce uncertainties of abundances produced in the slow neutron capture process in massive stars.  
  Address [Dietz, M.; Lederer-Woods, C.; Tattersall, A.; Battino, U.; Kahl, D.; Lonsdale, S. J.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Midlothian, Scotland, Email: mirco.dietz@ptb.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647603800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4811  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Damone, L. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title Be-7 (n,p)Li-7 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN Type Journal Article
  Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 121 Issue 4 Pages 042701 - 7pp  
  Keywords  
  Abstract We report on the measurement of the Be-7(n,p)Li-7 cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other. The measurement was performed with a Si telescope and a high-purity sample produced by implantation of a Be-7 ion beam at the ISOLDE facility at CERN. While a significantly higher cross section is found at low energy, relative to current evaluations, in the region of BBN interest, the present results are consistent with the values inferred from the time-reversal Li-7(p,n)Be-7 reaction, thus yielding only a relatively minor improvement on the so-called cosmological lithium problem. The relevance of these results on the near-threshold neutron production in the p + Li-7 reaction is also discussed.  
  Address [Damone, L.; Barbagallo, M.; Mastromarco, M.; Colonna, N.; Mazzone, A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: alberto.mengoni@enea.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439547100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3674  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Balibrea-Correa, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Measurement of the alpha ratio and (n, gamma) cross section of U-235 from 0.2 to 200 eV at n_TOF Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 4 Pages 044615 - 18pp  
  Keywords  
  Abstract We measured the neutron capture-to-fission cross-section ratio (alpha ratio) and the capture cross section of U-235 between 0.2 and 200 eV at the nTOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the nTOF BaF2 Total Absorption Calorimeter (TAC), used for detection of gamma rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the Li-6(n, t) standard reaction determining the n_TOF neutron fluence; the well-known integral of the U-235(n, f) cross section between 7.8 and 11 eV was then used for its absolute normalization. The alpha ratio, obtained with slightly higher statistical fluctuations, was determined directly, without need for any reference cross section. To perform the analysis of this measurement we developed a new methodology to correct the experimentally observed effect that the probabilities of detecting a fission reaction in the TAC and the micromegas detectors are not independent. The results of this work have been used in a new evaluation of U-235 performed within the scope of the Collaborative International Evaluated Library Organisation (CIELO) Project, and are consistent with the ENDF/B-VIII.0 and JEFF-3.3 capture cross sections below 4 eV and above 100 eV. However, the measured capture cross section is on average 10% larger between 4 and 100 eV.  
  Address [Balibrea-Correa, J.; Mendoza, E.; Cano-Ott, D.] Ctr Invest Energet Medioambientales & Tecnol, CIEMAT, Madrid, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000579839000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4575  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Bacak, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 969 Issue Pages 163981 - 10pp  
  Keywords Fission detector; U-233; n_TOF; Time-of-flight  
  Abstract In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the U-233(n, gamma) cross-section at the nTOF facility at CERN, where it was coupled to the nTOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.  
  Address [Bacak, M.; Gunsing, F.; Vlachoudis, V.; Aberle, O.; Calviani, M.; Cardella, R.; Cerutti, F.; Chiaveri, E.; Ferrari, A.; Gilardoni, S.; Kadi, Y.; Macina, D.; Masi, A.; Mingrone, F.; Rubbia, C.; Sabate-Gilarte, M.; Zugec, P.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: michael.bacak@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000536792400015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4413  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Amaducci, S. et al); Domingo-Pardo, C.; Tain, J.L. url  doi
openurl 
  Title Measurement of the U-235(n, f) cross section relative to the Li-6(n, t) and B-10(n,alpha) standards from thermal to 170 keV neutron energy range at n_TOF Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 7 Pages 120 - 19pp  
  Keywords  
  Abstract .The U-235(n, f ) cross section was measured at n_TOF relative to Li-6(n, t) and B-10(n,alpha) , with high resolution ( L=183.49(2) m) and in a wide energy range (25meV-170keV) with 1.5% systematic uncertainty, making use of a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the yields of the U-235(n, f ) and of the two reference reactions under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10-30keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the cross section in the 9-18keV neutron energy range is indeed overestimated by almost 5% in the recently released evaluated data files ENDF/B-VIII.0 and JEFF3.3, as a consequence of a 7% overestimate in a single GMA node in the IAEA reference file. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The results here reported may lead to a reduction of the uncertainty in the 1-100keV neutron energy region. Finally, from the present data, a value of 249.7 +/- 1.4( stat )+/- 0.94( syst ) b<bold>eV has been extracted for the cross section integral between </bold>7.8 and 11eV, confirming the value of 247.5 +/- 3 b<bold>eV recently established as a standard</bold>.  
  Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Musumarra, A.] INFN, Lab Nazl Sud, Catania, Italy, Email: finocchiaro@lns.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477050900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4083  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Amaducci, S. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Measurement of the 140Ceðn;γþ Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 12 Pages 122701 - 8pp  
  Keywords  
  Abstract 140Ce(n, gamma) is a key reaction for slow neutron -capture (s -process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty approximate to 5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron -sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s -process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.  
  Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Brown, A.] INFN, Lab Nazl Sud, Catania, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202102900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6074  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Amaducci, S. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L. doi  openurl
  Title First Results of the Ce-140(n,gamma)Ce-141 Cross-Section Measurement at n_TOF Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal Universe  
  Volume 7 Issue 6 Pages 200 - 11pp  
  Keywords  
  Abstract An accurate measurement of the Ce-140(n,gamma) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the Ce-140 capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in Ce-140 to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the Ce-140 Maxwellian-averaged cross-section.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000665969800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4877  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Alcayne, V. et al); Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Ladarescu, I. url  doi
openurl 
  Title A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2 Type Journal Article
  Year 2024 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 217 Issue Pages 11pp  
  Keywords Neutron capture; PHWT; Scintillation detectors; Monte Carlo simulation  
  Abstract The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.  
  Address [Alcayne, V.; Cano-Ott, D.; Garcia, J.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A. Perez; Plaza, J.; Sanchez-Caballero, A.; Mendoza, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain, Email: victor.alcayne@ciemat.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185584800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5999  
Permanent link to this record
 

 
Author (down) Nzongani, U.; Zylberman, J.; Doncecchi, C.E.; Perez, A.; Debbasch, F.; Arnault, P. url  doi
openurl 
  Title Quantum circuits for discrete-time quantum walks with position-dependent coin operator Type Journal Article
  Year 2023 Publication Quantum Information Processing Abbreviated Journal Quantum Inf. Process.  
  Volume 22 Issue 7 Pages 270 - 46pp  
  Keywords Quantum walks; Quantum circuits; Quantum simulation  
  Abstract The aim of this paper is to build quantum circuits that implement discrete-time quantum walks having an arbitrary position-dependent coin operator. The position of the walker is encoded in base 2: with n wires, each corresponding to one qubit, we encode 2(n) position states. The data necessary to define an arbitrary position-dependent coin operator is therefore exponential in n. Hence, the exponentiality will necessarily appear somewhere in our circuits. We first propose a circuit implementing the position-dependent coin operator, that is naive, in the sense that it has exponential depth and implements sequentially all appropriate position-dependent coin operators. We then propose a circuit that “transfers” all the depth into ancillae, yielding a final depth that is linear in n at the cost of an exponential number of ancillae. Themain idea of this linear-depth circuit is to implement in parallel all coin operators at the different positions. Reducing the depth exponentially at the cost of having an exponential number of ancillae is a goal which has already been achieved for the problem of loading classical data on a quantum circuit (Araujo in Sci Rep 11:6329, 2021) (notice that such a circuit can be used to load the initial state of the walker). Here, we achieve this goal for the problem of applying a position-dependent coin operator in a discrete-time quantum walk. Finally, we extend the result of Welch (New J Phys 16:033040, 2014) from position-dependent unitaries which are diagonal in the position basis to position-dependent 2 x 2-block-diagonal unitaries: indeed, we show that for a position dependence of the coin operator (the block-diagonal unitary) which is smooth enough, one can find an efficient quantum-circuit implementation approximating the coin operator up to an error epsilon (in terms of the spectral norm), the depth and size of which scale as O(1/epsilon). A typical application of the efficient implementation would be the quantum simulation of a relativistic spin-1/2 particle on a lattice, coupled to a smooth external gauge field; notice that recently, quantum spatial-search schemes have been developed which use gauge fields as the oracle, to mark the vertex to be found (Zylberman in Entropy 23:1441, 2021), (Fredon arXiv:2210.13920). A typical application of the linear-depth circuit would be when there is spatial noise on the coin operator (and hence a non-smooth dependence in the position).  
  Address [Nzongani, Ugo; Doncecchi, Carlo-Elia; Arnault, Pablo] Univ Paris Saclay, CNRS, INRIA, Lab Methodes Formelles,ENS Paris Saclay, F-91190 Gif Sur Yvette, France, Email: ugo.nzongani@universite-paris-saclay.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-0755 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022408900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5587  
Permanent link to this record
 

 
Author (down) Nunes, R.C.; Vagnozzi, S.; Kumar, S.; Di Valentino, E.; Mena, O. url  doi
openurl 
  Title New tests of dark sector interactions from the full-shape galaxy power spectrum Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 12 Pages 123506 - 18pp  
  Keywords  
  Abstract We explore the role of redshift-space galaxy clustering data in constraining nongravitational interactions between dark energy (DE) and dark matter (DM), for which state-of-the-art limits have so far been obtained from late-time background measurements. We use the joint likelihood for prereconstruction full-shape (FS) galaxy power spectrum and postreconstruction Baryon Acoustic Oscillation (BAO) measurements from the BOSS DR12 sample, alongside Cosmic Microwave Background (CMB) data from Planck: from this dataset combination we infer H0 1/4 68.02+0.49 and the 2?? lower limit ?? > ???0.12, among the strongest limits ever reported on the DM-DE coupling strength ?? for the particular model considered. Contrary to what has been observed for the ??CDM model and simple extensions thereof, we find that the CMB + FS combination returns tighter constraints compared to the CMB + BAO one, suggesting that there is valuable additional information contained in the broadband of the power spectrum. We test this finding by running additional CMB-free analyses and removing sound horizon information, and discuss the important role of the equality scale in setting constraints on DM-DE interactions. Our results reinforce the critical role played by redshift-space galaxy clustering measurements in the epoch of precision cosmology, particularly in relation to tests of nonminimal dark sector extensions of the ??CDM model.  
  Address [Nunes, Rafael C.] Univ Fed Rio Grande Do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil, Email: rafadcnunes@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000813312800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5269  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva