|   | 
Details
   web
Records
Author (down) Middeldorf-Wygas, M.M.; Oldengott, I.M.; Bödeker, D.; Schwarz, D.J.
Title Cosmic QCD transition for large lepton flavor asymmetries Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue Pages 123533 - 10pp
Keywords
Abstract We study the impact of large lepton flavor asymmetries on the cosmic QCD transition. Scenarios of unequal lepton flavor asymmetries are observationally almost unconstrained and therefore open up a whole new parameter space for the cosmic QCD transition. We find that for large asymmetries, the formation of a Bose-Einstein condensate of pions can occur and identify the corresponding parameter space. In the vicinity of the QCD transition scale, we express the pressure in terms of a Taylor expansion with respect to the complete set of chemical potentials. The Taylor coefficients rely on input from lattice QCD calculations from the literature. The domain of applicability of this method is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5497
Permanent link to this record
 

 
Author (down) Menchon, C.C.; Olmo, G.J.; Rubiera-Garcia, D.
Title Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 10 Pages 104028 - 16pp
Keywords
Abstract We study Born-Infeld gravity coupled to an anisotropic fluid in a static, spherically symmetric background. The free function characterizing the fluid is selected on the following grounds: i) recovery of the Reissner-Nordstrom solution of General Relativity at large distances, ii) fulfillment of classical energy conditions, and iii) inclusion of models of nonlinear electrodynamics as particular examples. Four branches of solutions are obtained, depending on the signs of two parameters on the gravity and matter sectors. On each branch, we discuss in detail the modifications on the innermost region of the corresponding solutions, which provides a plethora of configurations, including nonsingular black holes and naked objects, wormholes, and de Sitter cores. The regular character of these configurations is discussed according to the completeness of geodesics and the behavior of curvature scalars.
Address [Menchon, Cintia C.; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000415600400009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3369
Permanent link to this record
 

 
Author (down) Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Constraining the primordial black hole abundance with 21-cm cosmology Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 4 Pages 043540 - 23pp
Keywords
Abstract The discoveries of a number of binary black hole mergers by LIGO and VIRGO have reinvigorated the interest that primordial black holes (PBHs) of tens of solar masses could contribute non-negligibly to the dark matter energy density. Should even a small population of PBHs with masses greater than or similar to O(M-circle dot) exist, they could profoundly impact the properties of the intergalactic medium and provide insight into novel processes at work in the early Universe. We demonstrate here that observations of the 21-cm transition in neutral hydrogen during the epochs of reionization and cosmic dawn will likely provide one of the most stringent tests of solar mass PBHs. In the context of 21-cm cosmology, PBHs give rise to three distinct observable effects: (i) the modification to the primordial power spectrum (and thus also the halo mass function) induced by Poisson noise, (ii) a uniform heating and ionization of the intergalactic medium via x-rays produced during accretion, and (iii) a local modification to the temperature and density of the ambient medium surrounding isolated PBHs. Using a four-parameter astrophysical model, we show that experiments like SKA and HERA could potentially improve upon existing constraints derived using observations of the cosmic microwave background by more than 1 order of magnitude.
Address [Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000483047300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4122
Permanent link to this record
 

 
Author (down) McDermott, S.D.; Witte, S.J.
Title Cosmological evolution of light dark photon dark matter Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 063030 - 14pp
Keywords
Abstract Light dark photons are subject to various plasma effects, such as Debye screening and resonant oscillations, which can lead to a more complex cosmological evolution than is experienced by conventional cold dark matter candidates. Maintaining a consistent history of dark photon dark matter requires ensuring that the superthennal abundance present in the early Universe (i) does not deviate significantly after the formation of the cosmic microwave background (CMB), and (ii) does not excessively leak into the Standard Model plasma after big band nucleosynthesis (BBN). We point out that the role of nonresonant absorption, which has previously been neglected in cosmological studies of this dark matter candidate, produces strong constraints on dark photon dark matter with mass as low as 10(-22) eV. Furthermore, we show that resonant conversion of dark photons after recombination can produce excessive heating of the intergalactic medium (IGM) which is capable of prematurely reionizing hydrogen and helium, leaving a distinct imprint on both the Ly-a forest and the integrated optical depth of the CMB. Our constraints surpass existing cosmological bounds by more than 5 orders of magnitude across a wide range of dark photon masses.
Address [McDermott, Samuel D.] Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, POB 500, Batavia, IL 60510 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000522168800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4346
Permanent link to this record
 

 
Author (down) Mazumdar, A.; Morisi, S.
Title Split neutrinos, two Majorana and one Dirac, and implications for leptogenesis, dark matter, and inflation Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 4 Pages 045031 - 6pp
Keywords
Abstract We propose a simple framework to split neutrinos with a slight departure from tribimaximal-where two of the neutrinos are Majorana type which provide thermal leptogenesis. We propose a model based on S-3 flavor symmetry. The Dirac neutrino with a tiny Yukawa coupling explains primordial inflation and the cosmic microwave background radiation, where the inflaton is the gauge invariant flat direction. The observed baryon asymmetry, and the scale of inflation are intimately tied to the observed reactor angle sin theta(13), which can be further constrained by the LHC and the 0 nu beta beta experiments. The model also provides the lightest right-handed sneutrino as a part of the inflaton to be the dark matter candidate.
Address [Mazumdar, Anupam] Univ Lancaster, Lancaster LA1 4YB, England
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308009000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1144
Permanent link to this record