toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P. doi  openurl
  Title Monte Carlo calculation of beam quality correction factors for PTW cylindrical ionization chambers in photon beams Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 20 Pages 205005 - 11pp  
  Keywords TRS 398; Monte Carlo; dosimetry; ionization chambers; MV photon beams  
  Abstract The beam quality correction factork(Q)for megavoltage photon beams has been calculated for eight PTW (Freiburg, Germany) ionization chambers (Farmer chambers PTW30010, PTW30011, PTW30012, and PTW30013, Semiflex 3D chambers PTW31021, PTW31010, and PTW31013, and the PinPoint 3D chamber PTW31016). Simulations performed on the widely used NE-2571 ionization chamber have been used to benchmark the results. The Monte Carlo code PENELOPE/penEasy was used to calculate the absorbed dose to a point in water and the absorbed dose to the active air volume of the chambers for photon beams in the range 4 to 24 MV. Of the nine ionization chambers analysed, only five are included in the current version of the International Code of Practice for dosimetry based on standards of absorbed dose to water (IAEA TRS 398). The values reported in this work agree with those in the literature within the uncertainty estimates and are to be included in the average values of the data obtained by different working groups for the forthcoming update of TRS 398.  
  Address [Gimenez-Alventosa, Vicent] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, Valencia, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576070000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4556  
Permanent link to this record
 

 
Author (down) Gimenez-Alventosa, V.; Ballester, F.; Vijande, J. doi  openurl
  Title VoxelMages: a general-purpose graphical interface for designing geometries and processing DICOM images for PENELOPE Type Journal Article
  Year 2016 Publication Applied Radiation And Isotopes Abbreviated Journal Appl. Radiat. Isot.  
  Volume 118 Issue Pages 251-257  
  Keywords 87.53.Bn; 87.53.Jw; 87.55.Qr; 87.55.km; 87.55.K  
  Abstract The design and construction of geometries for Monte Carlo calculations is an error-prone, time-consuming, and complex step in simulations describing particle interactions and transport in the field of medical physics. The software VoxelMages has been developed to help the user in this task. It allows to design complex geometries and to process DICOM image files for simulations with the general-purpose Monte Carlo code PENELOPE in an easy and straightforward way. VoxelMages also allows to import DICOM-RT structure contour information as delivered by a treatment planning system. Its main characteristics, usage and performance benchmarking are described in detail.  
  Address [Gimenez-Alventosa, V.; Ballester, F.; Vijande, J.] Univ Valencia, Dept Fis Atom Mol & Nucl, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000390736100039 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2904  
Permanent link to this record
 

 
Author (down) Gimenez-Alventosa, V.; Antunes, P.C.G.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Andreo, P. doi  openurl
  Title Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy Type Journal Article
  Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 62 Issue 1 Pages 146-164  
  Keywords Monte Carlo; dosimetry; low-energy seed; collision-kerma; mass energy-absorption coefficients; energy-fluence correction factor  
  Abstract The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).  
  Address [Gimenez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391567700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2923  
Permanent link to this record
 

 
Author (down) Garcia-Cases, F.; Perez-Calatayud, J.; Ballester, F.; Vijande, J.; Granero, D. doi  openurl
  Title Peripheral dose around a mobile linac for intraoperative radiotherapy: radiation protection aspects Type Journal Article
  Year 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 38 Issue 4 Pages 1393-1411  
  Keywords Mobetron; mobile electron linear accelerator; radiotherapy intraoperative  
  Abstract The aim of this work is to analyse the scattered radiation produced by the mobile accelerator Mobetron 1000. To do so, detailed Monte Carlo simulations using two different codes, Penelope2008 and Geant4, were performed. Measurements were also done. To quantify the attenuation due to the internal structures, present in the accelerator head, on the scattered radiation produced, some of the main structural shielding in the Mobetron 1000 has been incorporated into the geometry simulation. Results are compared with measurements. Some discrepancies between the calculated and measured dose values were found. These differences can be traced back to the importance of the radiation component due to low energy scattered electrons. This encouraged us to perform additional calculations to separate the role played by this component. Ambient dose equivalent, H*(10), outside of the operating room (OR) has been evaluated using Geant4. H*(10) has been measured inside and outside the OR, being its values compatible with those reported in the literature once the low energy electron component is removed. With respect to the role played by neutrons, estimations of neutron H*(10) using Geant4 together with H*(10) measurements has been performed for the case of the 12 MeV electron beam. The values obtained agree with the experimental values existing in the literature, being much smaller than those registered in conventional accelerators. This study is a useful tool for the clinical user to investigate the radiation protection issues arising with the use of these accelerators in ORs without structural shielding. These results will also enable to better fix the maximum number of treatments that could be performed while insuring adequate radiological protection of workers and public in the hospital.  
  Address [Garcia-Cases, F.] Hosp Univ San Juan de Alicante, Serv Radiofis & Protecc Radiol, Alacant, Spain, Email: garcia_frad@gva.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448769200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3784  
Permanent link to this record
 

 
Author (down) Fletcher, E.M.; Ballester, F.; Beaulieu, L.; Morrison, H.; Poher, A.; Rivard, M.J.; Sloboda, R.S.; Vijande, J.; Thomson, R.M. doi  openurl
  Title Generation and comparison of 3D dosimetric reference datasets for COMS eye plaque brachytherapy using model-based dose calculations Type Journal Article
  Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 51 Issue Pages 694-706  
  Keywords Monte Carlo; ocular brachytherapy; treatment planning  
  Abstract PurposeA joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs).Acquisition and Validation MethodsFive test cases are developed: (1) a single model 6711 125I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16-mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within & SIM;2.5% and global agreement was & SIM;2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and & SIM;20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5.Data Format and Usage NotesDose distributions for each set of MC and TPS calculations are available online () along with input files and all other information necessary to repeat the calculations.Potential ApplicationsThese data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.  
  Address [Fletcher, Elizabeth M.; Thomson, Rowan M.] Carleton Univ, Phys Dept, Carleton Lab Radiotherapy Phys, Ottawa, ON, Canada, Email: rthomson@physics.carleton.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001058112300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5632  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva