|   | 
Details
   web
Records
Author (up) Pakarinen, J. et al; Algora, A.
Title Collectivity in Pb-196, Pb-198 isotopes probed in Coulomb-excitation experiments at REX-ISOLDE Type Journal Article
Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 44 Issue 6 Pages 064009 - 10pp
Keywords Coulomb excitation; radioactive ion beams; gamma-ray spectroscopy; gamma transitions and level energies
Abstract The neutron-deficient Pb-196,Pb-198 isotopes have been studied in Coulomb-excitation experiments employing the Miniball gamma-ray spectrometer and radioactive ion beams from the REX-ISOLDE post-accelerator at CERN. The reduced transition probabilities of the first excited 2(+) states in Pb-196 and Pb-198 nuclei have been measured for the first time. Values of B (E2) = 18.2(-4.1)(+4.8) W. u. and B (E2) = 13.1(-3.5)(+4.9) W. u., were obtained, respectively. The experiment sheds light on the development of collectivity when moving from the regime governed by the generalised seniority scheme to a region, where intruding structures, associated with different deformed shapes, start to come down in energy and approach the spherical ground state.
Address [Pakarinen, J.; Grahn, T.; Herzan, A.; Jakobsson, U.; Konki, J.; Peura, P.; Rahkila, P.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland, Email: janne.pakarinen@jyu.fi
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000400875800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3126
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P04009 - 28pp
Keywords Data analysis; Large detector systems for particle and astroparticle physics; Detector alignment and calibration methods (lasers, sources, particle-beams)
Abstract The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
Address Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000317462400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1413
Permanent link to this record
 

 
Author (up) Piersanti, L.; Bellini, F.; Bini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Fiore, S.; Iarocci, E.; La Tessa, C.; Marafini, M.; Mattei, I.; Patera, V.; Ortega, P.G.; Sarti, A.; Schuy, C.; Sciubba, A.; Vanstalle, M.; Voena, C.
Title Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u C-12 beam Type Journal Article
Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 59 Issue 7 Pages 1857-1872
Keywords drift chamber; LYSO; hadrontherapy; carbon ion beam; dose monitoring
Abstract The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator.The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60 degrees and 90 degrees with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.
Address [Piersanti, L.; De Lucia, E.; Iarocci, E.; Mattei, I.; Sarti, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy, Email: vincenzo.patera@lnf.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000333186200020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1735
Permanent link to this record
 

 
Author (up) Resta-Lopez, J.
Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P11010 - 19pp
Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)
Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500035 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1697
Permanent link to this record
 

 
Author (up) Ros Garcia, A.; Barrio, J.; Etxebeste, A.; Garcia-Lopez, J.; Jimenez-Ramos, M.C.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Roser, J.; Llosa, G.
Title MACACO II test-beam with high energy photons Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 24 Pages 245027 - 12pp
Keywords Compton imaging; Compton camera; proton therapy; LaBr3; test-beam; image reconstruction
Abstract The IRIS group at IFIC Valencia is developing a three-layer Compton camera for treatment monitoring in proton therapy. The system is composed of three detector planes, each made of a LaBr3<i monolithic crystal coupled to a SiPM array. Having obtained successful results with the first prototype (MACACO) that demonstrated the feasibility of the proposed technology, a second prototype (MACACO II) with improved performance has been developed, and is the subject of this work. The new system has an enhanced detector energy resolution which translates into a higher spatial resolution of the telescope. The image reconstruction method has also been improved with an accurate model of the sensitivity matrix. The device has been tested with high energy photons at the National Accelerator Centre (CNA, Seville). The tests involved a proton beam of 18 MeV impinging on a graphite target, to produce 4.4 MeV photons. Data were taken at different system positions of the telescope with the first detector at 65 and 160 mm from the target, and at different beam intensities. The measurements allowed successful reconstruction of the photon emission distribution at two target positions separated by 5 mm in different telescope configurations. This result was obtained both with data recorded in the first and second telescope planes (two interaction events) and, for the first time in beam experiments, with data recorded in the three planes (three interaction events).
Address [Ros Garcia, A.; Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Roser, J.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: arosgar@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000600803000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4654
Permanent link to this record