toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Chatterjee, S.S.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Nonunitarity of the lepton mixing matrix at the European Spallation Source Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages 075016 - 16pp  
  Keywords  
  Abstract If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the “conventional” phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European Spallation Source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on the nonunitarity parameters.  
  Address [Chatterjee, Sabya Sachi] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898616000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5440  
Permanent link to this record
 

 
Author (down) Cervello, A.; Carrio, F.; Garcia, R.; Martos, J.; Soret, J.; Torres, J.; Valero, A. doi  openurl
  Title The TileCal PreProcessor interface with the ATLAS global data acquisition system at the HL-LHC Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1043 Issue Pages 167492 - 2pp  
  Keywords ATLAS; Tile Calorimeter; HL-LHC; TilePPr; FELIX; SWROD; DAQ  
  Abstract The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. It will take place throughout 2026-2028, corresponding to the Long Shutdown 3. During this upgrade, the ATLAS Tile Hadronic Calorimeter (TileCal) will replace completely on-and off-detector electronics adopting a new read-out architecture. Signals captured from TileCal are digitized by the on-detector electronics and transmitted to the TileCal PreProcessor (TilePPr) located off-detector, which provides the interface with the ATLAS trigger and data acquisition systems.TilePPr receives, process and transmits the data from the on-detector system and transmits it to the Front -End Link eXchange (FELIX) system. FELIX is the ATLAS common hardware in all the subdetectors designed to act as a data router, receiving and forwarding data to the SoftWare Read-Out Driver (SWROD) computers. FELIX also distributes the Timing, Trigger and Control (TTC) signals to the TilePPr to be propagated to the on-detector electronics. The SWROD is an ATLAS common software solution to perform detector specific data processing, including configuration, calibration, control and monitoring of the partitionIn this contribution we will introduce the new read-out elements for TileCal at the HL-LHC, the intercon-nection between the off-detector electronics and the FELIX system, the configuration and implementation for the test beam campaigns, as well as future developments of the preprocessing and monitoring status of the calorimeter modules through the SWROD infrastructure.  
  Address [Cervello, Antonio; Carrio, Fernando; Valero, Alberto] UV, CSIC, Inst Fis Corpuscular, Carrer Catedrat Jose Beltran Martinez 2, Valencia 46980, Spain, Email: antonio.cervello@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000868495700012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5399  
Permanent link to this record
 

 
Author (down) Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title Mapping the SMEFT to discoverable models Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 229 - 34pp  
  Keywords SMEFT; Other Weak Scale BSM Models  
  Abstract The matching of specific new physics scenarios onto the SMEFT framework is a well-understood procedure. The inverse problem, the matching of the SMEFT to UV scenarios, is more difficult and requires the development of new methods to perform a systematic exploration of models. In this paper we use a diagrammatic technique to construct in an automated way a complete set of possible UV models (given certain, well specified assumptions) that can produce specific groups of SMEFT operators, and illustrate its use by generating models with no tree-level contributions to four-fermion (4F) operators. Those scenarios, which only contribute to 4F at one-loop order, can contain relatively light particles that could be discovered at the LHC in direct searches. For this class of models, we find an interesting interplay between indirect SMEFT and direct searches. We discuss some examples on how this interplay would look like when combining low-energy observables with the SMEFT Higgs-fermion analyses and searches for resonance at the LHC.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Hilb Weg 22, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861474500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5361  
Permanent link to this record
 

 
Author (down) Centelles Chulia, S.; Cepedello, R.; Medina, O. url  doi
openurl 
  Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 080 - 23pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter  
  Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.  
  Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867661300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5387  
Permanent link to this record
 

 
Author (down) Catani, S.; Cieri, L. url  doi
openurl 
  Title Multiple soft radiation at one-loop order and the emission of a soft quark-antiquark pair Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 2 Pages 97 - 27pp  
  Keywords  
  Abstract We consider the radiation of two or more soft partons in QCD hard-scattering at one-loop order. The corresponding scattering amplitude is singular, and the singular behaviour is controlled by a process-independent soft current. Using regularization in d = 4 – 2 epsilon space-time dimensions, we explicitly evaluate the ultraviolet and infrared divergent (epsilon-pole) terms of the one-loop soft current for emission of an arbitrary number of soft partons in a generic hard-scattering process. Then we consider the specific case of soft quark-antiquark (q (q) over bar) emission and we compute the one-loop current by including the finite terms. We find that the one-loop soft-q (q) over bar current exhibits a new type of transverse-momentum singularity, which has a quantum (absorptive) origin and a purely non-abelian character. At the squared amplitude (cross section) level, this transverse-momentum singularity produces contributions to multijet production processes in hadron collisions. The one-loop squared current also leads to charge asymmetry terms, which are a distinctive features of soft-q (q) over bar radiation. We also extend these results to the cases of QED and mixed QCDxQED radiative corrections for soft fermion-antifermion emission.  
  Address [Cieri, Leandro] Univ Firenze, Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy, Email: leandrosanber@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000749553600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5098  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva