toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gran, R.; Nieves, J.; Sanchez, F.; Vicente Vacas, M.J. url  doi
openurl 
  Title Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 11 Pages 113007 - 10pp  
  Keywords  
  Abstract We extend to 10 GeV results from a microscopic calculation of charged-current neutrino-nucleus reactions that do not produce a pion in the final state. For the class of events coming from neutrino interactions with two nucleons producing two holes (2p2h), limiting the calculation to three-momentum transfers less than 1.2 GeV produces a two-dimensional distribution in momentum and energy transfer that is roughly constant as a function of energy. The cross section for 2p2h interactions approximately scales with the number of nucleons for isoscalar nuclei, similar to the quasi-elastic cross section. When limited to momentum transfers below 1.2 GeV, the cross section is 26% of the quasi-elastic cross section at 3 GeV, but 14% if we neglect a Delta(1232) resonance absorption component. The same quantities are 33% and 17% for antineutrinos. For the quasi-elastic interactions, the full nuclear model with long range correlations produces an even larger, but approximately constant distortion of the shape of the four-momentum transfer at all energies above 2 GeV. The 2p2h enhancement and long-range correlation distortions to the cross section for these interactions are significant enough they should be observable in precision experiments to measure neutrino oscillations and neutrino interactions at these energies, but also balance out and produce less total distortion than each effect does individually.  
  Address [Gran, R.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000328692000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1666  
Permanent link to this record
 

 
Author (up) Guastalla, G. et al; Algora, A.; Domingo-Pardo, C. doi  openurl
  Title Coulomb Excitation of Sn-104 and the Strength of the Sn-100 Shell Closure Type Journal Article
  Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 110 Issue 17 Pages 172501 - 5pp  
  Keywords  
  Abstract A measurement of the reduced transition probability for the excitation of the ground state to the first 2(+) state in Sn-104 has been performed using relativistic Coulomb excitation at GSI. Sn-104 is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus Sn-100. The value B(E2; 0(+) -> 2(+)) = 0.10(4) e(2)b(2) is significantly lower than earlier results for Sn-106 and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.  
  Address Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317915200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1423  
Permanent link to this record
 

 
Author (up) Guendelman, E.I.; Olmo, G.J.; Rubiera-Garcia, D.; Vasihoun, M. url  doi
openurl 
  Title Nonsingular electrovacuum solutions with dynamically generated cosmological constant Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 726 Issue 4-5 Pages 870-875  
  Keywords Modified gravity; Palatini formalism; Nonlinear electrodynamics; Dynamical cosmological constant; Nonsingular solutions; Wormholes  
  Abstract We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.  
  Address [Guendelman, E. I.; Vasihoun, M.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel, Email: guendel@bgumail.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327907000045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1680  
Permanent link to this record
 

 
Author (up) Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Consequences of heavy-quark symmetries for hadronic molecules Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 5 Pages 054007 - 5pp  
  Keywords  
  Abstract Among the newly observed structures in the heavy-quarkonium mass region, some have been proposed to be hadronic molecules. We investigate the consequences of heavy- quark flavor symmetry on these heavy meson hadronic molecules. The symmetry allows us to predict new hadronic molecules on one hand, and test the hadronic molecular assumption of the observed structures on the other hand. We explore the consequences of the flavor symmetry assuming the X(3872) and Z(b)(10 610) as an isoscalar D (D) over bar* and isovector B (B) over bar* hadronic molecule, respectively. A series of hadronic molecules composed of heavy mesons are predicted. In particular, there is an isoscalar 1(++) B (B) over bar* bound state with a mass about 10 580 MeV which may be searched for in the Y(1S, 2S)pi(+) pi(-) pi(0) mass distribution; the isovector charmonium partners of the Z(b)(10 610) and the Z(b)(10 650) are also predicted, which probably corresponds to the very recently observed Z(c)(3900) and Z(c)(4025) resonances by the BESIII Collaboration.  
  Address [Guo, Feng-Kun] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@hiskp.uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324053300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1573  
Permanent link to this record
 

 
Author (up) Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Heavy-antiquark-diquark symmetry and heavy hadron molecules: Are there triply heavy pentaquarks? Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 5 Pages 054014 - 6pp  
  Keywords  
  Abstract We explore the consequences of heavy flavor, heavy quark spin, and heavy antiquark-diquark symmetries for hadronic molecules within an effective field theory framework. Owing to heavy antiquark-diquark symmetry, the doubly heavy baryons have approximately the same light-quark structure as the heavy antimesons. As a consequence, the existence of a heavy meson-antimeson molecule implies the possibility of a partner composed of a heavy meson and a doubly heavy baryon. In this regard, the D (D) over bar* molecular nature of the X(3872) will hint at the existence of several baryonic partners with isospin I = 0 and J(P) = 5(-)/2 or 3(-)/2. Moreover, if the Z(b)(10650) turns out to be a B*(B) over bar* bound state, we can be confident of the existence of Xi(bb)*(B) over bar* hadronic molecules with quantum numbers I(J(P)) = 1(1(-)/2) and I(J(P)) = 1(3/2(-)). These states are of special interest since they can be considered to be triply heavy pentaquarks.  
  Address [Guo, Feng-Kun] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@hiskp.uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324232700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1580  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva