|   | 
Details
   web
Records
Author (up) ANTARES, IceCube, Pierre Auger, LIGO Sci and VIRGO Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Type Journal Article
Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 850 Issue 2 Pages L35 - 18pp
Keywords gamma-ray burst: general; gravitational waves; neutrinos
Abstract The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-505686800 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000417541800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3421
Permanent link to this record
 

 
Author (up) ANTARES, LIGO Scientific and Virgo Collaborations (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007 Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 008 - 40pp
Keywords
Abstract We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January – September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino – gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000321200100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1619
Permanent link to this record
 

 
Author (up) Antel, C. et al; Lopez-Pavon, J.; Sandner, S.; Urrea, S.
Title Feebly-interacting particles: FIPs 2022 Workshop Report Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 12 Pages 1122 - 266pp
Keywords
Abstract Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.
Address [Antel, C.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland, Email: MGiannotti@barry.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001127234200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5908
Permanent link to this record
 

 
Author (up) Antusch, S.; Figueroa, D.G.; Marschall, K.; Torrenti, F.
Title Energy distribution and equation of state of the early Universe: Matching the end of inflation and the onset of radiation domination Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 811 Issue Pages 135888 - 7pp
Keywords
Abstract We study the energy distribution and equation of state of the universe between the end of inflation and the onset of radiation domination (RD), considering observationally consistent single-field inflationary scenarios, with a potential 'flattening' at large field values, and a monomial shape V(phi) proportional to vertical bar phi vertical bar(p) around the origin. As a proxy for (p)reheating, we include a quadratic interaction g(2)phi X-2(2) between the inflaton phi and a light scalar 'daughter' field X, with g(2) > 0. We capture the non-perturbative and non-linear nature of the system dynamics with lattice simulations, obtaining that: i) the final energy transferred to X depends only on p, not on g(2); ii) the final transfer of energy is always negligible for 2 <= p < 4, and of order similar to 50% for p >= 4; iii) the system goes at late times to matter-domination for p = 2, and always to RD for p > 2. In the latter case we calculate the number of e-folds until RD, significantly reducing the uncertainty in the inflationary observables Tl-s and r.
Address [Antusch, Stefan; Marschall, Kenneth; Torrenti, Francisco] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland, Email: f.torrenti@unibas.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000612225400040 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4699
Permanent link to this record
 

 
Author (up) Antusch, S.; Figueroa, D.G.; Marschall, K.; Torrenti, F.
Title Characterizing the postinflationary reheating history: Single daughter field with quadratic-quadratic interaction Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 4 Pages 043532 - 36pp
Keywords
Abstract We study the evolution of the energy distribution and equation of state of the Universe from the end of inflation until the onset of either radiation domination (RD) or a transient period of matter domination (MD). We use both analytical techniques and lattice simulations. We consider two-field models where the inflaton (/) has a monomial potential after inflation V((/)) proportional to i(/) – vip (p 4, and of order similar to 50% for p 4. The system goes to MD at late times for p = 2, while it goes to RD for p > 2. In the later case, we can calculate exactly the number of e-folds until RD as a function of g2, and hence predict accurately inflationary observables like the scalar tilt ns and the tensor-to-scalar ratio r. In the scenario (ii), the energy is always transferred completely to X for p > 2, as long as its effective mass m2X = g2((/) – v)2 is not negligible. For p = 2, the final ratio between the energy densities of X and (/) depends strongly on g2. For all p > 2, the system always goes to MD at late times.
Address [Antusch, Stefan; Marschall, Kenneth; Torrenti, Francisco] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000767129500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5173
Permanent link to this record