Siciliano, M. et al, & Gadea, A. (2020). Shape coexistence in neutron-deficient Hg-188 investigated via lifetime measurements. Phys. Rev. C, 102(1), 014318–16pp.
Abstract: Background: Shape coexistence in the Z approximate to 82 region has been established in mercury, lead, and polonium isotopes. For even-even mercury isotopes with 100 <= N <= 106 multiple fingerprints of this phenomenon are observed, which seems to be no longer present for N >= 110. According to a number of theoretical calculations, shape coexistence is predicted in the Hg-188 isotope. Purpose: The aim of this work was to measure lifetimes of excited states in Hg-188 to infer their collective properties, such as the deformation. Extending the investigation to higher-spin states, which are expected to be less affected by band-mixing effects, can provide additional information on the coexisting structures. Methods: The Hg-188 nucleus was populated using two different fusion-evaporation reactions with two targets, Gd-158 and Gd-160, and a beam of S-34 provided by the Tandem-ALPI accelerator complex at the Laboratori Nazionali di Legnaro. The channels of interest were selected using the information from the Neutron Wall array, while the gamma rays were detected using the GALILEO gamma-ray spectrometer. Lifetimes of excited states were determined using the recoil-distance Doppler-shift method, employing the dedicated GALILEO plunger device. Results: Lifetimes of the states up to spin 16 (h) over bar were measured and the corresponding reduced transition probabilities were calculated. Assuming two-band mixing and adopting, as done commonly, the rotational model, the mixing strengths and the deformation parameters of the unperturbed structures were obtained from the experimental results. In order to shed light on the nature of the observed configurations in the Hg-188 nucleus, the extracted transition strengths were compared with those resulting from state-of-the-art beyond-mean-field calculations using the symmetry-conserving configuration-mixing approach, limited to axial shapes, and the five-dimensional collective Hamiltonian, including the triaxial degree of freedom. Conclusions: The first lifetime measurement for states with spin >= 6 suggested the presence of an almost spherical structure above the 12(1)(+) isomer and allowed elucidating the structure of the intruder band. The comparison of the extracted B(E2) strengths with the two-band mixing model allowed the determination of the ground-state band deformation. Both beyond-mean-field calculations predict coexistence of a weakly deformed band with a strongly prolate-deformed one, characterized by elongation parameters similar to those obtained experimentally, but the calculated relative position of the bands and their mixing strongly differ.
|
Shi, P. P., Baru, V., Guo, F. K., Hanhart, C., & Nefediev, A. (2024). Production of the X(4014) as the Spin-2 Partner of X(3872) in e + e – Collisions. Chin. Phys. Lett., 41(3), 031301–7pp.
Abstract: In 2021, the Belle collaboration reported the first observation of a new structure in the psi(2S)gamma final state produced in the two-photon fusion process. In the hadronic molecule picture, this new structure can be associated with the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872) with the quantum numbers J(PC) = 2(++) conventionally named X-2. In this work we evaluate the electronic width of this new state and argue that its nature is sensitive to its total width, the experimental measurement currently available being unable to distinguish between different options. Our estimates demonstrate that the planned Super tau-Charm Facility offers a promising opportunity to search for and study this new state in the invariant mass distributions for the final states J/psi gamma and psi(2S)gamma.
|
Shi, P. P., Albaladejo, M., Du, M. L., Guo, F. K., & Nieves, J. (2025). P-wave charmonium contribution to hidden-charm states from a reanalysis of lattice QCD data. Phys. Rev. D, 111(7), 074043–26pp.
Abstract: We reanalyze, considering the contribution of P-wave charmonia, lattice data for the DD<overline>-DSD<overline>S coupled-channel of Prelovsek et al. [J. High Energy Phys. 06 (2021) 035.] and DD<overline>* systems of Prelovsek et al. [Phys. Rev. Lett. 111, 192001 (2013).] with m pi <^> 280 and 266 MeV, and L = 24a/32a (a <^> 0.09 fm) and L = 16a (a <^> 0.1239(13) fm), respectively. The hidden-charm states with JPC = 0++, 1++, and 2++ quantum numbers are then searched for. For 0++, the analysis reveals three poles in the DD<overline>-DSD<overline>S coupled-channel amplitude, corresponding to three states. Two of these poles, located near the DD<overline> and DSD<overline>S thresholds, can be interpreted as mostly molecular states. A third pole above the DSD<overline>S threshold is originated from the P-wave chi c0(2P) charmonium state. The number of poles found in the DD<overline>-DSD<overline>S system is the same as that found in the original lattice analysis though the position of the third pole changes sizeably. In the 1++ sector, we find two poles in the complex energy plane. The first one is related to the molecular X(3872) state, with a compositeness exceeding 90%, while the second one, stemming from the chi c1(2P) charmonium, appears above the DD<overline>* threshold and it likely corresponds to the recently discovered chi c1(4010) state. In the 2++ sector, we also report two poles and find that the dressed chi c2(2P) is lighter than the D*D<overline>* molecular state, with the dynamics of the latter closely related to that of the heavy-quark spin-symmetry partner of the X(3872). Our exploratory study of the 1++ and 2++ sectors offers valuable insights into their dynamics, but given that the fits that we carry out are underconstrained, more lattice data are required to draw robust conclusions.
|
Sguazzin, M. et al, & Domingo-Pardo, C. (2025). First simultaneous measurement of the γ-ray and neutron emission probabilities in inverse kinematics at a heavy-ion storage ring. Phys. Rev. C, 111(2), 024614–13pp.
Abstract: The probabilities for gamma-ray and particle emission as a function of the excitation energy of a decaying nucleus are valuable observables for constraining the ingredients of the models that describe the deexcitation of nuclei near the particle emission threshold. These models are essential in nuclear astrophysics and applications. In this paper, we have for the first time simultaneously measured the gamma-ray and neutron emission probabilities of 208Pb. The measurement was performed in inverse kinematics at the Experimental Storage Ring (ESR) of the GSI/FAIR facility, where a 208Pb beam interacted through the 208Pb(p, p') reaction with a hydrogen gas jet target. Instead of detecting the gamma rays and neutrons emitted by 208Pb, we detected the heavy beamlike residues produced after gamma and neutron emission. These heavy residues were fully separated by a dipole magnet of the ESR and were detected with outstanding efficiencies. The comparison of the measured probabilities with model calculations has allowed us to test and select different descriptions of the gamma-ray strength function and the nuclear level density available in the literature.
|
Sguazzin, M. et al, & Domingo-Pardo, C. (2025). First Measurement of the Neutron-Emission Probability with a Surrogate Reaction in Inverse Kinematics at a Heavy-Ion Storage Ring. Phys. Rev. Lett., 134(7), 072501–6pp.
Abstract: Neutron-induced reaction cross sections of short-lived nuclei are imperative to understand the origin of heavy elements in stellar nucleosynthesis and for societal applications, but their measurement is extremely complicated due to the radioactivity of the targets involved. One way of overcoming this issue is to combine surrogate reactions with the unique possibilities offered by heavy-ion storage rings. In this work, we describe the first surrogate-reaction experiment in inverse kinematics, which we successfully conducted at the Experimental Storage Ring (ESR) of the GSI/FAIR facility, using the 208Pb(p; p0) reaction as a surrogate for neutron capture on 207Pb. Thanks to the outstanding detection efficiencies possible at the ESR, we were able to measure for the first time the neutron-emission probability as a function of the excitation energy of 208Pb. We have used this probability to select different descriptions of the gamma-ray strength function and nuclear level density, and provide reliable results for the neutron-induced radiative capture cross section of 207Pb at energies for which no experimental data exist.
|
Servant, G., & Simakachorn, P. (2023). Constraining postinflationary axions with pulsar timing arrays. Phys. Rev. D, 108(12), 123516–16pp.
Abstract: Models that produce axionlike particles (ALPs) after cosmological inflation due to spontaneous U(1) symmetry breaking also produce cosmic-string networks. Those axionic strings lose energy through gravitational-wave emission during the whole cosmological history, generating a stochastic background of gravitational waves that spans many decades in frequency. We can therefore constrain the axion decay constant and axion mass from limits on the gravitational-wave spectrum and compatibility with dark matter abundance as well as dark radiation. We derive such limits from analyzing the most recent NANOGrav data from pulsar timing arrays (PTAs). The limits are similar to the Neff bounds on dark radiation for ALP masses ma less than or similar to 10-22 eV. On the other hand, for heavy ALPs with ma greater than or similar to 0.1 GeV and NDW not equal 1, new regions of parameter space can be probed by PTA data due to the dominant domain-wall contribution to the gravitational-wave background.
|
Servant, G., & Simakachorn, P. (2024). Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings. Phys. Rev. D, 109(10), 103538–24pp.
Abstract: We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.
|
Sepehri, A., Pincak, R., & Olmo, G. J. (2017). M-theory, graphene-branes and superconducting wormholes. Int. J. Geom. Methods Mod. Phys., 14(11), 1750167–32pp.
Abstract: Exploiting an M-brane system whose structure and symmetries are inspired by those of graphene (what we call a graphene-brane), we propose here a similitude between two layers of graphene joined by a nanotube and wormholes scenarios in the brane world. By using the symmetries and mathematical properties of the M-brane system, we show here how to possibly increase its conductivity, to the point of making it as a superconductor. The questions of whether and under which condition this might point to the corresponding real graphene structures becoming superconducting are briefly outlined.
|
Senes, E., Argyropoulos, T., Tecker, F., & Wuensch, W. (2018). Beam-loading effect on breakdown rate in high-gradient accelerating cavities: An experiment at the Compact Linear Collider Test Facility at CERN. Phys. Rev. Accel. Beams, 21(10), 102001–8pp.
Abstract: Radio frequency breakdown rate is a crucial performance parameter that ensures that the design luminosity is achieved in the CLIC linear collider. The required low breakdown rate for CLIC, of the order of 10(-7) breakdown pulse(-1) m(-1), has been demonstrated in a number of 12 GHz CLIC prototype structures at gradients in excess of the design 100 MV/m accelerating gradient, however without the presence of the accelerated beam and associated beam loading. The beam loading induced by the approximately 1 A CLIC main beam significantly modifies the field distribution inside the structures, and the effect on breakdown rate is potentially significant so needs to be determined. A dedicated experiment has been carried out in the CLIC Test Facility CTF3 to measure this effect, and the results are presented.
|
Segarra, A., & Bernabeu, J. (2020). Absolute neutrino mass and the Dirac/Majorana distinction from the weak interaction of aggregate matter. Phys. Rev. D, 101(9), 093004–6pp.
Abstract: The 2 nu-mediated force has a range of microns, well beyond the atomic scale. The effective potential is built from the t-channel absorptive part of the scattering amplitude and depends on neutrino properties on shell. We demonstrate that neutral aggregate matter has a weak charge and calculate the matrix of six coherent charges for its interaction with definite-mass neutrinos. Near the range of the potential the neutrino pair is nonrelativistic, leading to observable absolute mass and Dirac/Majorana distinction via different r-dependence and violation of the weak equivalence principle.
|