toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Blanco, A.; Belver, D.; Cabanelas, P.; Diaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Kolb, B.; Lopes, L.; Palka, M.; Pereira, A.; Traxler, M.; Zumbruch, P. doi  openurl
  Title RPC HADES-TOF wall cosmic ray test performance Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 661 Issue Pages S114-S117  
  Keywords Gaseous detectors; Timing; TOF; RPC; HADES  
  Abstract In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m(2). All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.  
  Address [Blanco, A.; Fonte, P.; Lopes, L.; Pereira, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: alberto@coimbra.lip.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311568900029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1285  
Permanent link to this record
 

 
Author (up) Blankenburg, G.; Morisi, S. url  doi
openurl 
  Title Fermion masses and mixing with tri-bimaximal in SO(10) with type-I seesaw Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 016 - 18pp  
  Keywords Neutrino Physics; GUT  
  Abstract We study a class of models for tri-bimaximal neutrino mixing in SO(10) grand unified SUSY framework. Neutrino masses arise from both type-I and type-II seesaw mechanisms. We use dimension five operators in order to not spoil tri-bimaximal mixing by means of type-I contribution in the neutrino sector. We show that it is possible to fit all fermion masses and mixings including also the recent T2K result as deviation from the tri-bimaximal.  
  Address [Blankenburg, G.] Univ Roma Tre, Dipartimento Fis E Amaldi, I-00146 Rome, Italy, Email: blankenburg@fis.uniroma3.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300181800016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 970  
Permanent link to this record
 

 
Author (up) Blennow, M.; Fernandez-Martinez, E.; Mena, O.; Redondo, J.; Serra, E.P. url  doi
openurl 
  Title Asymmetric Dark Matter and Dark Radiation Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 022 - 23pp  
  Keywords dark matter theory; particle physics – cosmology connection; physics of the early universe  
  Abstract Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.  
  Address [Blennow, Mattias] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: Mattias.Blennow@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307079600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1165  
Permanent link to this record
 

 
Author (up) Blume, M.; Navab, N.; Rafecas, M. doi  openurl
  Title Joint image and motion reconstruction for PET using a B-spline motion model Type Journal Article
  Year 2012 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 57 Issue 24 Pages 22pp  
  Keywords  
  Abstract We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with amotion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.  
  Address [Blume, Moritz; Rafecas, Magdalena] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: moritz.blume@fasterplan.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312106200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1267  
Permanent link to this record
 

 
Author (up) Bodenstein, S.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Bottom-quark mass from finite energy QCD sum rules Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 3 Pages 034003 - 5pp  
  Keywords  
  Abstract Finite energy QCD sum rules involving both inverse-and positive-moment integration kernels are employed to determine the bottom-quark mass. The result obtained in the (MS) over bar scheme at a reference scale of 10 GeV is m (m) over bar (b)(10 GeV) = 3623(9) MeV. This value translates into a scale-invariant mass (m) over bar (b)((m) over bar (b)) = 4171(9) MeV. This result has the lowest total uncertainty of any method, and is less sensitive to a number of systematic uncertainties that affect other QCD sum rule determinations.  
  Address [Bodenstein, S.; Dominguez, C. A.; Schilcher, K.] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000299938300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 896  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva