|   | 
Details
   web
Records
Author (up) Debastiani, V.R.; Dias, J.M.; Oset, E.
Title Study of the DKK and DK(K)over-bar systems Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 016014 - 9pp
Keywords
Abstract Using the fixed center approximation to Faddeev equations, we investigate the DKK and DK (K) over bar three-body systems, considering that the DK dynamically generates, through its I = 0 component, the D(so)(*()2317) molecule. According to our findings, for the DK (K) over bar interaction we find evidence of a state I(J(p)) = 1/2 (0(-)) just above the D-s0(*)(2317) (K) over bar threshold and around the Df(0)(980) threshold, with mass of about 2833-2858 MeV, made mostly of Df(0)(980). On the other hand, no evidence related to a state from the DKK interaction is found. The state found could be seen in the ppD invariant mass.
Address [Debastiani, V. R.; Dias, J. M.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Inst Invest Paterna, Dept Fis Teor, Apartado 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406298500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3212
Permanent link to this record
 

 
Author (up) Debastiani, V.R.; Liang, W.H.; Xie, J.J.; Oset, E.
Title Predictions for eta(c) -> eta pi(+)pi(-) producing f(0)(500), f(0)(980) and a(0)(980) Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 766 Issue Pages 59-64
Keywords Charmonium decays; Scalar meson states; Dynamically generated resonances
Abstract We perform calculations for the eta(c) -> eta pi(+)pi(-) decay using elements of SU(3) symmetry to see the weight of different trios of pseudoscalars produced in this decay, prior to the final state interaction of the mesons. After that, the interaction of pairs of mesons, leading finally to eta pi(+)pi(-), is done using the chiral unitary approach. We evaluate the pi(+)pi(-) and pi eta mass distributions and find large and clear signals for f(0)(500), f(0)(980) and a(0)(980) excitation. The reaction is similar to the chi(c1) -> eta pi(+)pi(-), which has been recently measured at BESIII and its implementation and comparison with these predictions will be very valuable to shed light on the nature of the low mass scalar mesons.
Address [Debastiani, V. R.; Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: vinicius.rodrigues@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000427059300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3513
Permanent link to this record
 

 
Author (up) Debastiani, V.R.; Sakai, S.; Oset, E.
Title Role of a triangle singularity in the pi N(1535) contribution to gamma p -> p pi(0) eta Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 96 Issue 2 Pages 025201 - 7pp
Keywords
Abstract We have studied the gamma p -> p pi(0) eta reaction paying attention to the two main mechanisms at low energies, the gamma p ->Delta(1700) -> eta Delta(1232) and the gamma p -> Delta(1700) -> pi N(1535). Both are driven by the photoexcitation of the Delta (1700) and the second one involves a mechanism that leads to a triangle singularity. We are able to evaluate quantitatively the cross section for this process and show that it agrees with the experimental determination. Yet there are some differences with the standard partial wave analysis which does not include explicitly the triangle singularity. The exercise also shows the convenience of exploring possible triangle singularities in other reactions and how a standard partial wave analysis can be extended to accommodate them.
Address [Debastiani, V. R.] Univ Valencia, Ctr Mixto, CSIC, Inst Invest Paterna,Dept Fis Teor, Apartado 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000406755100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3227
Permanent link to this record
 

 
Author (up) del Rio, A.; Ferreiro, A.; Navarro-Salas, J.; Torrenti, F.
Title Adiabatic regularization with a Yukawa interaction Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 10 Pages 105003 - 19pp
Keywords
Abstract We extend the adiabatic regularization method for an expanding universe to include the Yukawa interaction between quantized Dirac fermions and a homogeneous background scalar field. We give explicit expressions for the renormalized expectation values of the stress-energy tensor < T-mu nu > and the bilinear <(psi) over bar psi > in a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. These are basic ingredients in the semiclassical field equations of fermionic matter in curved spacetime interacting with a background scalar field. The ultraviolet subtracting terms of the adiabatic regularization can be naturally interpreted as coming from appropriate counterterms of the background fields. We fix the required covariant counterterms. To test our approach we determine the contribution of the Yukawa interaction to the conformal anomaly in the massless limit and show its consistency with the heat-kernel method using the effective action.
Address [del Rio, Adrian; Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: adrian.rio@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000401447900006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3127
Permanent link to this record
 

 
Author (up) Di Valentino, E.; Melchiorri, A.; Mena, O.
Title Can interacting dark energy solve the H-0 tension? Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 4 Pages 043503 - 11pp
Keywords
Abstract The answer is yes. We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant H-0 between the cosmic microwave background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two data sets points toward a nonzero dark matter-dark energy coupling. at more than two standard deviations, with xi = -0.26(-0.12)(+0.16) at 95% C.L., i.e. with a moderate evidence for interacting dark energy with an odds ratio of 6:1 respect to a non interacting cosmological constant. However the H-0 tension is better solved when the equation of state of the interacting dark energy component is allowed to freely vary, with a phantomlike equation of state w = -1.185 +/- 0.064 (at 68% C.L.), ruling out the pure cosmological constant case, w = -1, again at more than two standard deviations. When Planck data are combined with external datasets, as BAO, JLA Supernovae Ia luminosity distances, cosmic shear or lensing data, we find perfect consistency with the cosmological constant scenario and no compelling evidence for a dark matter-dark energy coupling.
Address [Di Valentino, Eleonora] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France, Email: eleonora.di_valentino@iap.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000427529900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3517
Permanent link to this record