|   | 
Details
   web
Records
Author (down) Sandner, S.; Escudero, M.; Witte, S.J.
Title Precision CMB constraints on eV-scale bosons coupled to neutrinos Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 8 Pages 709 - 12pp
Keywords
Abstract The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalizewith neutrinos via the inverse decay process, v (v) over bar -> X, and suppress neutrino free streaming near recombination – even for couplings as small as lambda(v) similar to O(10(-13)). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either N-int = 1, 2 or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivatedmodels, such as the singlet majoron model or a light U(1) L-mu- L-t gauge boson, and find that they represent the leading constraints for masses m(X) similar to 1 eV. Finally, we revisit the extent to which neutrinophilic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.
Address [Sandner, Stefan] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001045200700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5608
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K.; Domenech-Garret, J.L.; Sanchis-Gual, N.
Title Cosmological analogies in the search for new physics in high-energy collisions Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 3 Pages 035013 - 7pp
Keywords
Abstract In this paper, analogies between multiparticle production in high-energy collisions and the time evolution of the early Universe are discussed. A common explanation is put forward under the assumption of an unconventional early state: a rapidly expanding universe before recombination (last scattering surface), followed by the cosmic microwave background, later evolving up to present days, versus the formation of hidden/dark states in hadronic collisions followed by a conventional QCD parton shower yielding final-state particles. In particular, long-range angular correlations are considered pointing out deep connections between the two physical cases potentially useful for the discovery of new physics.
Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000558084500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4498
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K.
Title Searching for new physics with three-particle correlations in pp collisions at the LHC Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 781 Issue Pages 505-509
Keywords pp interactions at LHC; Models beyond the Standard Model; Multiparticle azimuthal and rapidity correlations; Hidden Valley models; Correlated clusters
Abstract New phenomena involving pseudorapidity and azimuthal correlations among final-state particles in pp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques.
Address [Sanchis-Lozano, Miguel-Angel] CERN, Dept Theoret Phys, CH-1211 Geneva 23, Switzerland, Email: Miguel.Angel.Sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000435653100065 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3634
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.
Title Ridge effect and three-particle correlations Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 7 Pages 074012 - 13pp
Keywords
Abstract Pseudorapidity and azimuthal three-particle correlations are studied based on a correlated-cluster model of multiparticle production. The model provides a common framework for correlations in proton-proton and heavy-ion collisions allowing easy comparison with the measurements. It is shown that azimuthal cluster correlations are definitely required in order to understand three-particle correlations in the near-side ridge effect. This is similar to the explanation of the ridge phenomenon found in our previous analysis of two-particle correlations and generalizes the model to higher-order correlations.
Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Dr Moliner 50, E-46100 Valencia, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000412977500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3329
Permanent link to this record
 

 
Author (down) Sanchis-Lozano, M.A.; Sanz, V.
Title Observable imprints of primordial gravitational waves on the temperature anisotropies of the cosmic microwave background Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 6 Pages 063529 - 11pp
Keywords
Abstract We examine the contribution of tensor modes, in addition to the dominant scalar ones, on the temperature anisotropies of the cosmic microwave background (CMB). To this end, we analyze in detail the temperature two -point angular correlation function C(Theta) from the Planck 2018 dataset, focusing on large angles (Theta greater than or similar to 120 degrees) corresponding to small l multipoles. A hierarchical set of infrared cutoffs are naturally introduced to the scalar and tensor power spectra of the CMB by invoking an extra Kaluza-Klein spatial dimension compactifying at about the grand unified theory scale between the Planck epoch and the start of inflation. We associate this set of lower scalar and tensor cutoffs with the parity of the multipole expansion of the C(Theta) function. By fitting the Planck 2018 data we compute the multipole coefficients, thereby reproducing the well-known odd -parity preference in angular correlations seen by all three satellite missions: Cosmic Background Explorer, WMAP, and Planck. Our fits improve significantly once tensor modes are included in the analysis, hence providing a hint of the imprints of primordial gravitational waves on the temperature correlations observed in the CMB today. To conclude, we suggest a relationship between, on the one hand, the lack of (positive) large -angle correlations and the odd -parity dominance in the CMB and, on the other hand, the effect of primordial gravitational waves on the CMB temperature anisotropies.
Address [Sanchis-Lozano, Miguel -Angel; Sanz, Veronica] Univ Valencia, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: miguel.angel.sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001195716600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6038
Permanent link to this record