toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Beaulieu, L.; Ballester, F.; Granero, D.; Tedgren, A.C.; Haworth, A.; Lowenstein, J.R.; Ma, Y.Z.; Mourtada, F.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.L.; Thomson, R.M.; Verhaegen, F.; Fonseca, G.; Vijande, J. doi  openurl
  Title AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy Type Journal Article
  Year 2023 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 50 Issue 8 Pages e946–e960  
  Keywords brachytherapy; commissioning; dose calculation; model-based dose calculation; Monte Carlo; TG-186  
  Abstract The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.  
  Address [Beaulieu, Luc; Ma, Yunzhi] CHU Quebec Univ Laval, Serv Phys Med & Radioprotect, Quebec City, PQ, Canada, Email: beaulieu@phy.ulaval.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026540300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5579  
Permanent link to this record
 

 
Author (up) Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F. url  doi
openurl 
  Title Two-loop form factors for diphoton production in quark annihilation channel with heavy quark mass dependence Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 105 - 28pp  
  Keywords Higher-Order Perturbative Calculations; Top Quark  
  Abstract We present the computation of the two-loop form factors for diphoton production in the quark annihilation channel. These quantities are relevant for the NNLO QCD corrections to diphoton production at LHC recently presented in [1]. The computation is performed retaining full dependence on the mass of the heavy quark in the loops. The master integrals are evaluated by means of differential equations which are solved exploiting the generalised power series technique.  
  Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130350300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5865  
Permanent link to this record
 

 
Author (up) Beenakker, W.; Caron, S.; Kip, J.; Ruiz de Austri, R.; Zhang, Z. url  doi
openurl 
  Title New energy spectra in neutrino and photon detectors to reveal hidden dark matter signals Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 028 - 13pp  
  Keywords  
  Abstract Neutral particles capable of travelling cosmic distances from a source to detectors on Earth are limited to photons and neutrinos. Examination of the Dark Matter annihilation/decay spectra for these particles reveals the presence of continuum spectra (e.g. due to fragmentation and W or Z decay) and peaks (due to direct annihilations/decays). However, when one explores extensions of the Standard Model (BSM), unexplored spectra emerge that differ significantly from those of the Standard Model (SM) for both neutrinos and photons. In this paper, we argue for the inclusion of important spectra that include peaks as well as previously largely unexplored entities such as boxes and combinations of box, peak and continuum decay spectra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6085  
Permanent link to this record
 

 
Author (up) Belchior, F.M.; Maluf, R.V. url  doi
openurl 
  Title One-loop radiative corrections in bumblebee-Stueckelberg model Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 844 Issue Pages 138107 - 9pp  
  Keywords Bumblebee field; Stueckelberg field; Radiative corrections; Two point function  
  Abstract This work aims to study the radiative corrections in a vector model with spontaneous Lorentz symmetry violation, known in the literature as the bumblebee model. We consider such a model with self -interaction quadratic smooth potential responsible for spontaneous Lorentz symmetry breaking. The spectrum of this model displays a transversal nonmassive mode, identified as Nambu-Goldstone, and a massive longitudinal mode. Besides the Lorentz symmetry, this model also exhibits gauge symmetry violation. To restore the gauge symmetry, we introduce the Stueckelberg field and calculate the two -point function by employing the principal-value (PV) prescription. The result is nontransversal, leading to a massive excited mode.  
  Address [Belchior, Fernando M.; Maluf, Roberto V.] Univ Fed Ceara, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: belchior@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001122745000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5850  
Permanent link to this record
 

 
Author (up) Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S. url  doi
openurl 
  Title Localization of abelian gauge fields with Stueckelberg-like geometrical coupling on f(T, B)-thick brane Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 5 Pages 388 - 14pp  
  Keywords  
  Abstract In the context of f (T, B) modified teleparallel gravity, we investigate the influence of torsion scalar T and boundary term B on the confinement of both the gauge vector and Kalb-Ramond fields. Both fields require a suitable coupling in five-dimensional braneworld scenarios to yield a normalizable zero mode. We propose a Stueckelberg-like geometrical coupling that non-minimally couples the fields to the torsion scalar and boundary term. To set up our braneworld models, we use the first-order formalism in which two kinds of superpotential are taken: sine-Gordon and f(4)-deformed. The geometrical coupling is used to produce a localized zero mode. Moreover, we analyze the massive spectrum for both fields and obtain possible resonant massive modes. Furthermore, we do not find tachyonic modes leading to a consistent thick brane.  
  Address [Belchior, F. M.; Moreira, A. R. P.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986592700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5547  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva